1,179 research outputs found

    A layered control architecture for mobile robot navigation

    Get PDF
    A Thesis submitted to the University Research Degree Committee in fulfillment ofthe requirements for the degree of DOCTOR OF PHILOSOPHY in RoboticsThis thesis addresses the problem of how to control an autonomous mobile robot navigation in indoor environments, in the face of sensor noise, imprecise information, uncertainty and limited response time. The thesis argues that the effective control of autonomous mobile robots can be achieved by organising low level and higher level control activities into a layered architecture. The low level reactive control allows the robot to respond to contingencies quickly. The higher level control allows the robot to make longer term decisions and arranges appropriate sequences for a task execution. The thesis describes the design and implementation of a two layer control architecture, a task template based sequencing layer and a fuzzy behaviour based low level control layer. The sequencing layer works at the pace of the higher level of abstraction, interprets a task plan, mediates and monitors the controlling activities. While the low level performs fast computation in response to dynamic changes in the real world and carries out robust control under uncertainty. The organisation and fusion of fuzzy behaviours are described extensively for the construction of a low level control system. A learning methodology is also developed to systematically learn fuzzy behaviours and the behaviour selection network and therefore solve the difficulties in configuring the low level control layer. A two layer control system has been implemented and used to control a simulated mobile robot performing two tasks in simulated indoor environments. The effectiveness of the layered control and learning methodology is demonstrated through the traces of controlling activities at the two different levels. The results also show a general design methodology that the high level should be used to guide the robot's actions while the low level takes care of detailed control in the face of sensor noise and environment uncertainty in real time

    Artificial Intelligence Research Branch future plans

    Get PDF
    This report contains information on the activities of the Artificial Intelligence Research Branch (FIA) at NASA Ames Research Center (ARC) in 1992, as well as planned work in 1993. These activities span a range from basic scientific research through engineering development to fielded NASA applications, particularly those applications that are enabled by basic research carried out in FIA. Work is conducted in-house and through collaborative partners in academia and industry. All of our work has research themes with a dual commitment to technical excellence and applicability to NASA short, medium, and long-term problems. FIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at the Jet Propulsion Laboratory (JPL) and AI applications groups throughout all NASA centers. This report is organized along three major research themes: (1) Planning and Scheduling: deciding on a sequence of actions to achieve a set of complex goals and determining when to execute those actions and how to allocate resources to carry them out; (2) Machine Learning: techniques for forming theories about natural and man-made phenomena; and for improving the problem-solving performance of computational systems over time; and (3) Research on the acquisition, representation, and utilization of knowledge in support of diagnosis design of engineered systems and analysis of actual systems

    Mobile robot vavigation using a vision based approach

    Get PDF
    PhD ThesisThis study addresses the issue of vision based mobile robot navigation in a partially cluttered indoor environment using a mapless navigation strategy. The work focuses on two key problems, namely vision based obstacle avoidance and vision based reactive navigation strategy. The estimation of optical flow plays a key role in vision based obstacle avoidance problems, however the current view is that this technique is too sensitive to noise and distortion under real conditions. Accordingly, practical applications in real time robotics remain scarce. This dissertation presents a novel methodology for vision based obstacle avoidance, using a hybrid architecture. This integrates an appearance-based obstacle detection method into an optical flow architecture based upon a behavioural control strategy that includes a new arbitration module. This enhances the overall performance of conventional optical flow based navigation systems, enabling a robot to successfully move around without experiencing collisions. Behaviour based approaches have become the dominant methodologies for designing control strategies for robot navigation. Two different behaviour based navigation architectures have been proposed for the second problem, using monocular vision as the primary sensor and equipped with a 2-D range finder. Both utilize an accelerated version of the Scale Invariant Feature Transform (SIFT) algorithm. The first architecture employs a qualitative-based control algorithm to steer the robot towards a goal whilst avoiding obstacles, whereas the second employs an intelligent control framework. This allows the components of soft computing to be integrated into the proposed SIFT-based navigation architecture, conserving the same set of behaviours and system structure of the previously defined architecture. The intelligent framework incorporates a novel distance estimation technique using the scale parameters obtained from the SIFT algorithm. The technique employs scale parameters and a corresponding zooming factor as inputs to train a neural network which results in the determination of physical distance. Furthermore a fuzzy controller is designed and integrated into this framework so as to estimate linear velocity, and a neural network based solution is adopted to estimate the steering direction of the robot. As a result, this intelligent iv approach allows the robot to successfully complete its task in a smooth and robust manner without experiencing collision. MS Robotics Studio software was used to simulate the systems, and a modified Pioneer 3-DX mobile robot was used for real-time implementation. Several realistic scenarios were developed and comprehensive experiments conducted to evaluate the performance of the proposed navigation systems. KEY WORDS: Mobile robot navigation using vision, Mapless navigation, Mobile robot architecture, Distance estimation, Vision for obstacle avoidance, Scale Invariant Feature Transforms, Intelligent framework

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    CernoCAMAL : a probabilistic computational cognitive architecture

    Get PDF
    This thesis presents one possible way to develop a computational cognitive architecture, dubbed CernoCAMAL, that can be used to govern artificial minds probabilistically. The primary aim of the CernoCAMAL research project is to investigate how its predecessor architecture CAMAL can be extended to reason probabilistically about domain model objects through perception, and how the probability formalism can be integrated into its BDI (Belief-Desire-Intention) model to coalesce a number of mechanisms and processes. The motivation and impetus for extending CAMAL and developing CernoCAMAL is the considerable evidence that probabilistic thinking and reasoning is linked to cognitive development and plays a role in cognitive functions, such as decision making and learning. This leads us to believe that a probabilistic reasoning capability is an essential part of human intelligence. Thus, it should be a vital part of any system that attempts to emulate human intelligence computationally. The extensions and augmentations to CAMAL, which are the main contributions of the CernoCAMAL research project, are as follows: - The integration of the EBS (Extended Belief Structure) that associates a probability value with every belief statement, in order to represent the degrees of belief numerically. - The inclusion of the CPR (CernoCAMAL Probabilistic Reasoner) that reasons probabilistically over the goal- and task-oriented perceptual feedback generated by reactive sub-systems. - The compatibility of the probabilistic BDI model with the affect and motivational models and affective and motivational valences used throughout CernoCAMAL. A succession of experiments in simulation and robotic testbeds is carried out to demonstrate improvements and increased efficacy in CernoCAMAL’s overall cognitive performance. A discussion and critical appraisal of the experimental results, together with a summary, a number of potential future research directions, and some closing remarks conclude the thesis

    CernoCAMAL : a probabilistic computational cognitive architecture

    Get PDF
    This thesis presents one possible way to develop a computational cognitive architecture, dubbed CernoCAMAL, that can be used to govern artificial minds probabilistically. The primary aim of the CernoCAMAL research project is to investigate how its predecessor architecture CAMAL can be extended to reason probabilistically about domain model objects through perception, and how the probability formalism can be integrated into its BDI (Belief-Desire-Intention) model to coalesce a number of mechanisms and processes.The motivation and impetus for extending CAMAL and developing CernoCAMAL is the considerable evidence that probabilistic thinking and reasoning is linked to cognitive development and plays a role in cognitive functions, such as decision making and learning. This leads us to believe that a probabilistic reasoning capability is an essential part of human intelligence. Thus, it should be a vital part of any system that attempts to emulate human intelligence computationally.The extensions and augmentations to CAMAL, which are the main contributions of the CernoCAMAL research project, are as follows:- The integration of the EBS (Extended Belief Structure) that associates a probability value with every belief statement, in order to represent the degrees of belief numerically.- The inclusion of the CPR (CernoCAMAL Probabilistic Reasoner) that reasons probabilistically over the goal- and task-oriented perceptual feedback generated by reactive sub-systems.- The compatibility of the probabilistic BDI model with the affect and motivational models and affective and motivational valences used throughout CernoCAMAL.A succession of experiments in simulation and robotic testbeds is carried out to demonstrate improvements and increased efficacy in CernoCAMAL’s overall cognitive performance. A discussion and critical appraisal of the experimental results, together with a summary, a number of potential future research directions, and some closing remarks conclude the thesis

    Event-Driven Technologies for Reactive Motion Planning: Neuromorphic Stereo Vision and Robot Path Planning and Their Application on Parallel Hardware

    Get PDF
    Die Robotik wird immer mehr zu einem Schlüsselfaktor des technischen Aufschwungs. Trotz beeindruckender Fortschritte in den letzten Jahrzehnten, übertreffen Gehirne von Säugetieren in den Bereichen Sehen und Bewegungsplanung noch immer selbst die leistungsfähigsten Maschinen. Industrieroboter sind sehr schnell und präzise, aber ihre Planungsalgorithmen sind in hochdynamischen Umgebungen, wie sie für die Mensch-Roboter-Kollaboration (MRK) erforderlich sind, nicht leistungsfähig genug. Ohne schnelle und adaptive Bewegungsplanung kann sichere MRK nicht garantiert werden. Neuromorphe Technologien, einschließlich visueller Sensoren und Hardware-Chips, arbeiten asynchron und verarbeiten so raum-zeitliche Informationen sehr effizient. Insbesondere ereignisbasierte visuelle Sensoren sind konventionellen, synchronen Kameras bei vielen Anwendungen bereits überlegen. Daher haben ereignisbasierte Methoden ein großes Potenzial, schnellere und energieeffizientere Algorithmen zur Bewegungssteuerung in der MRK zu ermöglichen. In dieser Arbeit wird ein Ansatz zur flexiblen reaktiven Bewegungssteuerung eines Roboterarms vorgestellt. Dabei wird die Exterozeption durch ereignisbasiertes Stereosehen erreicht und die Pfadplanung ist in einer neuronalen Repräsentation des Konfigurationsraums implementiert. Die Multiview-3D-Rekonstruktion wird durch eine qualitative Analyse in Simulation evaluiert und auf ein Stereo-System ereignisbasierter Kameras übertragen. Zur Evaluierung der reaktiven kollisionsfreien Online-Planung wird ein Demonstrator mit einem industriellen Roboter genutzt. Dieser wird auch für eine vergleichende Studie zu sample-basierten Planern verwendet. Ergänzt wird dies durch einen Benchmark von parallelen Hardwarelösungen wozu als Testszenario Bahnplanung in der Robotik gewählt wurde. Die Ergebnisse zeigen, dass die vorgeschlagenen neuronalen Lösungen einen effektiven Weg zur Realisierung einer Robotersteuerung für dynamische Szenarien darstellen. Diese Arbeit schafft eine Grundlage für neuronale Lösungen bei adaptiven Fertigungsprozesse, auch in Zusammenarbeit mit dem Menschen, ohne Einbußen bei Geschwindigkeit und Sicherheit. Damit ebnet sie den Weg für die Integration von dem Gehirn nachempfundener Hardware und Algorithmen in die Industrierobotik und MRK

    Robo-CAMAL : anchoring in a cognitive robot

    Get PDF
    The CAMAL architecture (Computational Architectures for Motivation,Affect and Learning) provides an excellent framework within which to explore and investigate issues relevant to cognitive science and artificial intelligence. This thesis describes a small sub element of the CAMAL architecture that has been implemented on a mobile robot. The first area of investigation within this research relates to the anchoring problem. Can the robotic agent generate symbols based on responses within its perceptual systems and can it reason about its environment based on those symbols? Given that the agent can identify changes within its environment, can it then adapt its behaviour and alter its goals to mirror the change in its environment? The second area of interest involves agent learning. The agent has a domain model that details its goals, the actions it can perform and some of the possible environmental states it may encounter. The agent is not provided with the belief-goal-action combinations in order to achieve its goals. The agent is also unaware of the effect its actions have upon its environment. Can the agent experiment with its behaviour to generate its own belief-goal-action combinations that allow it to achieve its goals? A second related problem involves the case where the belief-goal-action combination is pre-programmed. This is when the agent is provided with several different methods with which to achieve a specific goal. Can the agent learn which combination is the best? This thesis will describe the sub-element of the CAMAL architecture that was developed for a robot (robo-CAMAL). It will also demonstrate how robo-CAMAL solves the anchoring problem, and learns how to act and adapt in its environment
    corecore