325 research outputs found

    Deep Reinforcement Learning-based Content Migration for Edge Content Delivery Networks with Vehicular Nodes

    Full text link
    With the explosive demands for data, content delivery networks are facing ever-increasing challenges to meet end-users quality-of-experience requirements, especially in terms of delay. Content can be migrated from surrogate servers to local caches closer to end-users to address delay challenges. Unfortunately, these local caches have limited capacities, and when they are fully occupied, it may sometimes be necessary to remove their lower-priority content to accommodate higher-priority content. At other times, it may be necessary to return previously removed content to local caches. Downloading this content from surrogate servers is costly from the perspective of network usage, and potentially detrimental to the end-user QoE in terms of delay. In this paper, we consider an edge content delivery network with vehicular nodes and propose a content migration strategy in which local caches offload their contents to neighboring edge caches whenever feasible, instead of removing their contents when they are fully occupied. This process ensures that more contents remain in the vicinity of end-users. However, selecting which contents to migrate and to which neighboring cache to migrate is a complicated problem. This paper proposes a deep reinforcement learning approach to minimize the cost. Our simulation scenarios realized up to a 70% reduction of content access delay cost compared to conventional strategies with and without content migration

    Control plane optimization in Software Defined Networking and task allocation for Fog Computing

    Get PDF
    As the next generation of mobile wireless standard, the fifth generation (5G) of cellular/wireless network has drawn worldwide attention during the past few years. Due to its promise of higher performance over the legacy 4G network, an increasing number of IT companies and institutes have started to form partnerships and create 5G products. Emerging techniques such as Software Defined Networking and Mobile Edge Computing are also envisioned as key enabling technologies to augment 5G competence. However, as popular and promising as it is, 5G technology still faces several intrinsic challenges such as (i) the strict requirements in terms of end-to-end delays, (ii) the required reliability in the control plane and (iii) the minimization of the energy consumption. To cope with these daunting issues, we provide the following main contributions. As first contribution, we address the problem of the optimal placement of SDN controllers. Specifically, we give a detailed analysis of the impact that controller placement imposes on the reactivity of SDN control plane, due to the consistency protocols adopted to manage the data structures that are shared across different controllers. We compute the Pareto frontier, showing all the possible tradeoffs achievable between the inter-controller delays and the switch-to-controller latencies. We define two data-ownership models and formulate the controller placement problem with the goal of minimizing the reaction time of control plane, as perceived by a switch. We propose two evolutionary algorithms, namely Evo-Place and Best-Reactivity, to compute the Pareto frontier and the controller placement minimizing the reaction time, respectively. Experimental results show that Evo-Place outperforms its random counterpart, and Best-Reactivity can achieve a relative error of <= 30% with respect to the optimal algorithm by only sampling less than 10% of the whole solution space. As second contribution, we propose a stateful SDN approach to improve the scalability of traffic classification in SDN networks. In particular, we leverage the OpenState extension to OpenFlow to deploy state machines inside the switch and minimize the number of packets redirected to the traffic classifier. We experimentally compare two approaches, namely Simple Count-Down (SCD) and Compact Count-Down (CCD), to scale the traffic classifier and minimize the flow table occupancy. As third contribution, we propose an approach to improve the reliability of SDN controllers. We implement BeCheck, which is a software framework to detect ``misbehaving'' controllers. BeCheck resides transparently between the control plane and data plane, and monitors the exchanged OpenFlow traffic messages. We implement three policies to detect misbehaving controllers and forward the intercepted messages. BeCheck along with the different policies are validated in a real test-bed. As fourth contribution, we investigate a mobile gaming scenario in the context of fog computing, denoted as Integrated Mobile Gaming (IMG) scenario. We partition mobile games into individual tasks and cognitively offload them either to the cloud or the neighbor mobile devices, so as to achieve minimal energy consumption. We formulate the IMG model as an ILP problem and propose a heuristic named Task Allocation with Minimal Energy cost (TAME). Experimental results show that TAME approaches the optimal solutions while outperforming two other state-of-the-art task offloading algorithms

    Managing Event-Driven Applications in Heterogeneous Fog Infrastructures

    Get PDF
    The steady increase in digitalization propelled by the Internet of Things (IoT) has led to a deluge of generated data at unprecedented pace. Thereby, the promise to realize data-driven decision-making is a major innovation driver in a myriad of industries. Based on the widely used event processing paradigm, event-driven applications allow to analyze data in the form of event streams in order to extract relevant information in a timely manner. Most recently, graphical flow-based approaches in no-code event processing systems have been introduced to significantly lower technological entry barriers. This empowers non-technical citizen technologists to create event-driven applications comprised of multiple interconnected event-driven processing services. Still, today’s event-driven applications are focused on centralized cloud deployments that come with inevitable drawbacks, especially in the context of IoT scenarios that require fast results, are limited by the available bandwidth, or are bound by the regulations in terms of privacy and security. Despite recent advances in the area of fog computing which mitigate these shortcomings by extending the cloud and moving certain processing closer to the event source, these approaches are hardly established in existing systems. Inherent fog computing characteristics, especially the heterogeneity of resources alongside novel application management demands, particularly the aspects of geo-distribution and dynamic adaptation, pose challenges that are currently insufficiently addressed and hinder the transition to a next generation of no-code event processing systems. The contributions of this thesis enable citizen technologists to manage event-driven applications in heterogeneous fog infrastructures along the application life cycle. Therefore, an approach for a holistic application management is proposed which abstracts citizen technologists from underlying technicalities. This allows to evolve present event processing systems and advances the democratization of event-driven application management in fog computing. Individual contributions of this thesis are summarized as follows: 1. A model, manifested in a geo-distributed system architecture, to semantically describe characteristics specific to node resources, event-driven applications and their management to blend application-centric and infrastructure-centric realms. 2. Concepts for geo-distributed deployment and operation of event-driven applications alongside strategies for flexible event stream management. 3. A methodology to support the evolution of event-driven applications including methods to dynamically reconfigure, migrate and offload individual event-driven processing services at run-time. The contributions are introduced, applied and evaluated along two scenarios from the manufacturing and logistics domain

    Machine Learning for Next-generation Content Delivery Networks: Deployment, Content Placement, and Performance Management

    Get PDF
    With the explosive demands for data and the growth in mobile users, content delivery networks (CDNs) are facing ever-increasing challenges to meet end-users quality-of-experience requirements, ensure scalability and remain cost-effective. These challenges encourage CDN providers to seek a solution by considering the new technologies available in today’s computer network domain. Network Function Virtualization (NFV) is a relatively new network service deployment technology used in computer networks. It can reduce capital and operational costs while yielding flexibility and scalability for network operators. Thanks to the NFV, the network functions that previously could be offered only by specific hardware appliances can now run as Virtualized Network Functions (VNF) on commodity servers or switches. Moreover, a network service can be flexibly deployed by a chain of VNFs, a structure known as the VNF Forwarding Graph or VNF-FG. Considering these advantages, the next-generation CDN will be deployed using NFV infrastructure. However, using NFV for service deployment is challenging as resource allocation in a shared infrastructure is not easy. Moreover, the integration of other paradigms (e.g., edge computing and vehicular network) into CDN will compound the complexity of content placement and performance management for the next-generation CDNs. In this regard, due to their impacts on final service and end-user perceived quality, the challenges in service deployment, content placement, and performance management should be addressed carefully. In this thesis, advanced machine learning methods are utilized to provide algorithmic solutions for the abovementioned challenges of the next generation CDNs. Regarding the challenges in the deployment of the next-generation CDNs, we propose two deep reinforcement learning-based methods addressing the joint problems of VNF-FG’s composition and embedding, as well as function scaling and topology adaptation. As for content placement challenges, a deep reinforcement learning-based approach for content migration in an edge-based CDN with vehicular nodes is proposed. The proposed approach takes advantage of the available caching resources in the proximity of the full local caches and efficiently migrates contents at the edge of the network. Moreover, for managing the performance quality of an operating CDN, an unsupervised machine learning anomaly detection method is provided. The proposed method uses clustering to enable easier performance analysis for next-generation CDNs. Each proposed method in this thesis is evaluated by comparison to the state-of-the-art approaches. Moreover, when applicable, the optimality gaps of the proposed methods are investigated as well

    Building blocks for the internet of things

    Get PDF

    National Certification Standard for Ground Source Heat Pump Personnel

    Full text link

    ρan-ρan

    Get PDF
    "With the peristaltic gurglings of this gastēr-investigative procedural – a soooo welcomed addition to the ballooning corpus of slot-versatile bad eggs The Confraternity of Neoflagellants (CoN) – [users] and #influencers everywhere will be belly-joyed to hold hands with neomedieval mutter-matter that literally sticks and branches, available from punctum in both frictionless and grip-gettable boke-shaped formats. A game-changer in Brownian temp-controlled phoneme capture, ρan-ρan’s writhing paginations are completely oxygen-soaked, overwriting the flavour profiles of 2013’s thN Lng folk 2go with no-holds-barred argumentations on all voice-like and lung-adjacent functions. Rumoured by experts to be dead to the Worldℱ, CoN has clearly turned its ear canal arrays towards the jabbering OMFG feedback signals from their scores of naive listeners, scrapping all lenticular exegesis and content profiles to construct taped-together vernacular dwellings housing ‘shrooming atmospheric awarenesses and pan-dimensional cross-talkers, making this anticipatory sequel a serious competitor across ambient markets, and a crowded kitchen in its own right. An utterly mondegreen-infested deep end may deter would-be study buddies from taking the plunge, but feet-wetted Dog Heads eager to sniff around for temporal folds and whiff past the stank of hastily proscribed future fogs ought to ©k no further than the roll-upable-rim of ρan-ρan’s bleeeeeding premodern lagoon. Arrange yerself cannonball-wise or lead with the #gut and you’ll be kersplashing in no times.
    • 

    corecore