13,151 research outputs found

    Quantum Randomness Certified by the Uncertainty Principle

    Full text link
    We present an efficient method to extract the amount of true randomness that can be obtained by a Quantum Random Number Generator (QRNG). By repeating the measurements of a quantum system and by swapping between two mutually unbiased bases, a lower bound of the achievable true randomness can be evaluated. The bound is obtained thanks to the uncertainty principle of complementary measurements applied to min- and max- entropies. We tested our method with two different QRNGs, using a train of qubits or ququart, demonstrating the scalability toward practical applications.Comment: 10 page

    Recommendations and illustrations for the evaluation of photonic random number generators

    Full text link
    The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h(ϵ,τ)h(\epsilon,\tau) as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission

    On privacy amplification, lossy compression, and their duality to channel coding

    Full text link
    We examine the task of privacy amplification from information-theoretic and coding-theoretic points of view. In the former, we give a one-shot characterization of the optimal rate of privacy amplification against classical adversaries in terms of the optimal type-II error in asymmetric hypothesis testing. This formulation can be easily computed to give finite-blocklength bounds and turns out to be equivalent to smooth min-entropy bounds by Renner and Wolf [Asiacrypt 2005] and Watanabe and Hayashi [ISIT 2013], as well as a bound in terms of the EγE_\gamma divergence by Yang, Schaefer, and Poor [arXiv:1706.03866 [cs.IT]]. In the latter, we show that protocols for privacy amplification based on linear codes can be easily repurposed for channel simulation. Combined with known relations between channel simulation and lossy source coding, this implies that privacy amplification can be understood as a basic primitive for both channel simulation and lossy compression. Applied to symmetric channels or lossy compression settings, our construction leads to proto- cols of optimal rate in the asymptotic i.i.d. limit. Finally, appealing to the notion of channel duality recently detailed by us in [IEEE Trans. Info. Theory 64, 577 (2018)], we show that linear error-correcting codes for symmetric channels with quantum output can be transformed into linear lossy source coding schemes for classical variables arising from the dual channel. This explains a "curious duality" in these problems for the (self-dual) erasure channel observed by Martinian and Yedidia [Allerton 2003; arXiv:cs/0408008] and partly anticipates recent results on optimal lossy compression by polar and low-density generator matrix codes.Comment: v3: updated to include equivalence of the converse bound with smooth entropy formulations. v2: updated to include comparison with the one-shot bounds of arXiv:1706.03866. v1: 11 pages, 4 figure

    Monte Carlo Simulation of Laser Diodes Sub-Poissonian Light Generation

    Get PDF
    When laser diodes are driven by high-impedance electrical sources the variance of the number of photo-detection events counted over large time durations is less than the average number of events (sub-Poissonian light). The paper presents a Monte Carlo simulation that keeps track of each level occupancy (0 or 1) in the conduction and valence bands, and of the number of light quanta in the optical cavity. When there is good electron-lattice thermal contact the electron and hole temperatures remain equal to that of the lattice. In that case, elementary laser-diode noise theory results are accurately reproduced by the simulation. But when the thermal contact is poor (or, almost equivalently, at high power levels) new effects occur (spectral-hole burning, temperature fluctuations, statistical fluctuations of the optical gain) that are difficult to handle theoretically. Our numerical simulation shows that the frequency domain over which the photo-current spectral density is below the shot-noise level becomes narrower as the optical power increases.Comment: 22 pages, 3 figures, 1 table, submitted to Optical and Quantum Electronic

    Does gravity have to be quantized? Lessons from non-relativistic toy models

    Get PDF
    It is often argued that gravity has to be a quantum theory simply because a fundamentally semiclassical approach would necessarily be inconsistent. Here I review recent Newtonian toy models of (stochastic) semiclassical gravity. They provide one option to implement a force semiclassically without getting into the known problems associated with mean-field. These models are not complete theories and should not be considered too seriously, but their consistency shows that semiclassical gravity is hard to dismiss on purely theoretical grounds.Comment: 16 pages -- written for the proceedings of the DICE 2018 workshop in Castiglioncello -- provides a more detailed account of the technical arguments in arXiv:1802.0329
    corecore