689 research outputs found

    A note on the efficiency of position mechanisms with budget constraints

    Get PDF
    We study the social efficiency of several well-known mechanisms for the allocation of a set of available (advertising) positions to a set of competing budget-constrained users (advertisers). Specifically, we focus on the Generalized Second Price auction (GSP), the Vickrey–Clarke–Groves mechanism (VCG) and the Expressive Generalized First Price auction (EGFP). Using liquid welfare as our efficiency benchmark, we prove a tight bound of 2 on the liquid price of anarchy and stability of these mechanisms for pure Nash equilibria

    On the Inefficiency of the Uniform Price Auction

    Full text link
    We present our results on Uniform Price Auctions, one of the standard sealed-bid multi-unit auction formats, for selling multiple identical units of a single good to multi-demand bidders. Contrary to the truthful and economically efficient multi-unit Vickrey auction, the Uniform Price Auction encourages strategic bidding and is socially inefficient in general. The uniform pricing rule is, however, widely popular by its appeal to the natural anticipation, that identical items should be identically priced. In this work we study equilibria of the Uniform Price Auction for bidders with (symmetric) submodular valuation functions, over the number of units that they win. We investigate pure Nash equilibria of the auction in undominated strategies; we produce a characterization of these equilibria that allows us to prove that a fraction 1-1/e of the optimum social welfare is always recovered in undominated pure Nash equilibrium -- and this bound is essentially tight. Subsequently, we study the auction under the incomplete information setting and prove a bound of 4-2/k on the economic inefficiency of (mixed) Bayes Nash equilibria that are supported by undominated strategies.Comment: Additions and Improvements upon SAGT 2012 results (and minor corrections on the previous version

    Generalized Second Price Auction with Probabilistic Broad Match

    Full text link
    Generalized Second Price (GSP) auctions are widely used by search engines today to sell their ad slots. Most search engines have supported broad match between queries and bid keywords when executing GSP auctions, however, it has been revealed that GSP auction with the standard broad-match mechanism they are currently using (denoted as SBM-GSP) has several theoretical drawbacks (e.g., its theoretical properties are known only for the single-slot case and full-information setting, and even in this simple setting, the corresponding worst-case social welfare can be rather bad). To address this issue, we propose a novel broad-match mechanism, which we call the Probabilistic Broad-Match (PBM) mechanism. Different from SBM that puts together the ads bidding on all the keywords matched to a given query for the GSP auction, the GSP with PBM (denoted as PBM-GSP) randomly samples a keyword according to a predefined probability distribution and only runs the GSP auction for the ads bidding on this sampled keyword. We perform a comprehensive study on the theoretical properties of the PBM-GSP. Specifically, we study its social welfare in the worst equilibrium, in both full-information and Bayesian settings. The results show that PBM-GSP can generate larger welfare than SBM-GSP under mild conditions. Furthermore, we also study the revenue guarantee for PBM-GSP in Bayesian setting. To the best of our knowledge, this is the first work on broad-match mechanisms for GSP that goes beyond the single-slot case and the full-information setting

    On the Efficiency of the Walrasian Mechanism

    Full text link
    Central results in economics guarantee the existence of efficient equilibria for various classes of markets. An underlying assumption in early work is that agents are price-takers, i.e., agents honestly report their true demand in response to prices. A line of research in economics, initiated by Hurwicz (1972), is devoted to understanding how such markets perform when agents are strategic about their demands. This is captured by the \emph{Walrasian Mechanism} that proceeds by collecting reported demands, finding clearing prices in the \emph{reported} market via an ascending price t\^{a}tonnement procedure, and returns the resulting allocation. Similar mechanisms are used, for example, in the daily opening of the New York Stock Exchange and the call market for copper and gold in London. In practice, it is commonly observed that agents in such markets reduce their demand leading to behaviors resembling bargaining and to inefficient outcomes. We ask how inefficient the equilibria can be. Our main result is that the welfare of every pure Nash equilibrium of the Walrasian mechanism is at least one quarter of the optimal welfare, when players have gross substitute valuations and do not overbid. Previous analysis of the Walrasian mechanism have resorted to large market assumptions to show convergence to efficiency in the limit. Our result shows that approximate efficiency is guaranteed regardless of the size of the market

    Smoothness for Simultaneous Composition of Mechanisms with Admission

    Full text link
    We study social welfare of learning outcomes in mechanisms with admission. In our repeated game there are nn bidders and mm mechanisms, and in each round each mechanism is available for each bidder only with a certain probability. Our scenario is an elementary case of simple mechanism design with incomplete information, where availabilities are bidder types. It captures natural applications in online markets with limited supply and can be used to model access of unreliable channels in wireless networks. If mechanisms satisfy a smoothness guarantee, existing results show that learning outcomes recover a significant fraction of the optimal social welfare. These approaches, however, have serious drawbacks in terms of plausibility and computational complexity. Also, the guarantees apply only when availabilities are stochastically independent among bidders. In contrast, we propose an alternative approach where each bidder uses a single no-regret learning algorithm and applies it in all rounds. This results in what we call availability-oblivious coarse correlated equilibria. It exponentially decreases the learning burden, simplifies implementation (e.g., as a method for channel access in wireless devices), and thereby addresses some of the concerns about Bayes-Nash equilibria and learning outcomes in Bayesian settings. Our main results are general composition theorems for smooth mechanisms when valuation functions of bidders are lattice-submodular. They rely on an interesting connection to the notion of correlation gap of submodular functions over product lattices.Comment: Full version of WINE 2016 pape
    • …
    corecore