3,177 research outputs found

    Pure Exploration for Multi-Armed Bandit Problems

    Get PDF
    We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of forecasters that perform an on-line exploration of the arms. These forecasters are assessed in terms of their simple regret, a regret notion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time. We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between the simple and the cumulative regret. One of the main results in the case of a finite number of arms is a general lower bound on the simple regret of a forecaster in terms of its cumulative regret: the smaller the latter, the larger the former. Keeping this result in mind, we then exhibit upper bounds on the simple regret of some forecasters. The paper ends with a study devoted to continuous-armed bandit problems; we show that the simple regret can be minimized with respect to a family of probability distributions if and only if the cumulative regret can be minimized for it. Based on this equivalence, we are able to prove that the separable metric spaces are exactly the metric spaces on which these regrets can be minimized with respect to the family of all probability distributions with continuous mean-payoff functions

    Pure Exploration for Multi-Armed Bandit Problems

    Get PDF
    We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of forecasters that perform an on-line exploration of the arms. These forecasters are assessed in terms of their simple regret, a regret notion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time. We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between the simple and the cumulative regret. One of the main results in the case of a finite number of arms is a general lower bound on the simple regret of a forecaster in terms of its cumulative regret: the smaller the latter, the larger the former. Keeping this result in mind, we then exhibit upper bounds on the simple regret of some forecasters. The paper ends with a study devoted to continuous-armed bandit problems; we show that the simple regret can be minimized with respect to a family of probability distributions if and only if the cumulative regret can be minimized for it. Based on this equivalence, we are able to prove that the separable metric spaces are exactly the metric spaces on which these regrets can be minimized with respect to the family of all probability distributions with continuous mean-payoff functions

    BelMan: Bayesian Bandits on the Belief--Reward Manifold

    Full text link
    We propose a generic, Bayesian, information geometric approach to the exploration--exploitation trade-off in multi-armed bandit problems. Our approach, BelMan, uniformly supports pure exploration, exploration--exploitation, and two-phase bandit problems. The knowledge on bandit arms and their reward distributions is summarised by the barycentre of the joint distributions of beliefs and rewards of the arms, the \emph{pseudobelief-reward}, within the beliefs-rewards manifold. BelMan alternates \emph{information projection} and \emph{reverse information projection}, i.e., projection of the pseudobelief-reward onto beliefs-rewards to choose the arm to play, and projection of the resulting beliefs-rewards onto the pseudobelief-reward. It introduces a mechanism that infuses an exploitative bias by means of a \emph{focal distribution}, i.e., a reward distribution that gradually concentrates on higher rewards. Comparative performance evaluation with state-of-the-art algorithms shows that BelMan is not only competitive but can also outperform other approaches in specific setups, for instance involving many arms and continuous rewards.Comment: 36 pages, 14 figures, accepted in ECML PKDD 201

    An Analysis of the Value of Information when Exploring Stochastic, Discrete Multi-Armed Bandits

    Full text link
    In this paper, we propose an information-theoretic exploration strategy for stochastic, discrete multi-armed bandits that achieves optimal regret. Our strategy is based on the value of information criterion. This criterion measures the trade-off between policy information and obtainable rewards. High amounts of policy information are associated with exploration-dominant searches of the space and yield high rewards. Low amounts of policy information favor the exploitation of existing knowledge. Information, in this criterion, is quantified by a parameter that can be varied during search. We demonstrate that a simulated-annealing-like update of this parameter, with a sufficiently fast cooling schedule, leads to an optimal regret that is logarithmic with respect to the number of episodes.Comment: Entrop

    Pure Exploration with Multiple Correct Answers

    Get PDF
    We determine the sample complexity of pure exploration bandit problems with multiple good answers. We derive a lower bound using a new game equilibrium argument. We show how continuity and convexity properties of single-answer problems ensures that the Track-and-Stop algorithm has asymptotically optimal sample complexity. However, that convexity is lost when going to the multiple-answer setting. We present a new algorithm which extends Track-and-Stop to the multiple-answer case and has asymptotic sample complexity matching the lower bound
    • …
    corecore