744 research outputs found

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    Eye Detection and Face Recognition Across the Electromagnetic Spectrum

    Get PDF
    Biometrics, or the science of identifying individuals based on their physiological or behavioral traits, has increasingly been used to replace typical identifying markers such as passwords, PIN numbers, passports, etc. Different modalities, such as face, fingerprint, iris, gait, etc. can be used for this purpose. One of the most studied forms of biometrics is face recognition (FR). Due to a number of advantages over typical visible to visible FR, recent trends have been pushing the FR community to perform cross-spectral matching of visible images to face images from higher spectra in the electromagnetic spectrum.;In this work, the SWIR band of the EM spectrum is the primary focus. Four main contributions relating to automatic eye detection and cross-spectral FR are discussed. First, a novel eye localization algorithm for the purpose of geometrically normalizing a face across multiple SWIR bands for FR algorithms is introduced. Using a template based scheme and a novel summation range filter, an extensive experimental analysis show that this algorithm is fast, robust, and highly accurate when compared to other available eye detection methods. Also, the eye locations produced by this algorithm provides higher FR results than all other tested approaches. This algorithm is then augmented and updated to quickly and accurately detect eyes in more challenging unconstrained datasets, spanning the EM spectrum. Additionally, a novel cross-spectral matching algorithm is introduced that attempts to bridge the gap between the visible and SWIR spectra. By fusing multiple photometric normalization combinations, the proposed algorithm is not only more efficient than other visible-SWIR matching algorithms, but more accurate in multiple challenging datasets. Finally, a novel pre-processing algorithm is discussed that bridges the gap between document (passport) and live face images. It is shown that the pre-processing scheme proposed, using inpainting and denoising techniques, significantly increases the cross-document face recognition performance

    Iris Recognition in Multiple Spectral Bands: From Visible to Short Wave Infrared

    Get PDF
    The human iris is traditionally imaged in Near Infrared (NIR) wavelengths (700nm-900nm) for iris recognition. The absorption co-efficient of color inducing pigment in iris, called Melanin, decreases after 700nm thus minimizing its effect when iris is imaged at wavelengths greater than 700nm. This thesis provides an overview and explores the efficacy of iris recognition at different wavelength bands ranging from visible spectrum (450nm-700nm) to NIR (700nm-900nm) and Short Wave Infrared (900nm-1600nm). Different matching methods are investigated at different wavelength bands to facilitate cross-spectral iris recognition.;The iris recognition analysis in visible wavelengths provides a baseline performance when iris is captured using common digital cameras. A novel blob-based matching algorithm is proposed to match RGB (visible spectrum) iris images. This technique generates a match score based on the similarity between blob like structures in the iris images. The matching performance of the blob based matching method is compared against that of classical \u27Iris Code\u27 matching method, SIFT-based matching method and simple correlation matching, and results indicate that the blob-based matching method performs reasonably well. Additional experiments on the datasets show that the iris images can be matched with higher confidence for light colored irides than dark colored irides in the visible spectrum.;As part of the analysis in the NIR spectrum, iris images captured in visible spectrum are matched against those captured in the NIR spectrum. Experimental results on the WVU multispectral dataset show promise in achieving a good recognition performance when the images are captured using the same sensor under the same illumination conditions and at the same resolution. A new proprietary \u27FaceIris\u27 dataset is used to investigate the ability to match iris images from a high resolution face image in visible spectrum against an iris image acquired in NIR spectrum. Matching in \u27FaceIris\u27 dataset presents a scenario where the two images to be matched are obtained by different sensors at different wavelengths, at different ambient illumination and at different resolution. Cross-spectral matching on the \u27FaceIris\u27 dataset presented a challenge to achieve good performance. Also, the effect of the choice of the radial and angular parameters of the normalized iris image on matching performance is presented. The experiments on WVU multispectral dataset resulted in good separation between genuine and impostor score distributions for cross-spectral matching which indicates that iris images in obtained in visible spectrum can be successfully matched against NIR iris images using \u27IrisCode\u27 method.;Iris is also analyzed in the Short Wave Infrared (SWIR) spectrum to study the feasibility of performing iris recognition at these wavelengths. An image acquisition setup was designed to capture the iris at 100nm interval spectral bands ranging from 950nm to 1650nm. Iris images are analyzed at these wavelengths and various observations regarding the brightness, contrast and textural content are discussed. Cross-spectral and intra-spectral matching was carried out on the samples collected from 25 subjects. Experimental results on this small dataset show the possibility of performing iris recognition in 950nm-1350nm wavelength range. Fusion of match scores from intra-spectral matching at different wavelength bands is shown to improve matching performance in the SWIR domain

    Face recognition by means of advanced contributions in machine learning

    Get PDF
    Face recognition (FR) has been extensively studied, due to both scientific fundamental challenges and current and potential applications where human identification is needed. FR systems have the benefits of their non intrusiveness, low cost of equipments and no useragreement requirements when doing acquisition, among the most important ones. Nevertheless, despite the progress made in last years and the different solutions proposed, FR performance is not yet satisfactory when more demanding conditions are required (different viewpoints, blocked effects, illumination changes, strong lighting states, etc). Particularly, the effect of such non-controlled lighting conditions on face images leads to one of the strongest distortions in facial appearance. This dissertation addresses the problem of FR when dealing with less constrained illumination situations. In order to approach the problem, a new multi-session and multi-spectral face database has been acquired in visible, Near-infrared (NIR) and Thermal infrared (TIR) spectra, under different lighting conditions. A theoretical analysis using information theory to demonstrate the complementarities between different spectral bands have been firstly carried out. The optimal exploitation of the information provided by the set of multispectral images has been subsequently addressed by using multimodal matching score fusion techniques that efficiently synthesize complementary meaningful information among different spectra. Due to peculiarities in thermal images, a specific face segmentation algorithm has been required and developed. In the final proposed system, the Discrete Cosine Transform as dimensionality reduction tool and a fractional distance for matching were used, so that the cost in processing time and memory was significantly reduced. Prior to this classification task, a selection of the relevant frequency bands is proposed in order to optimize the overall system, based on identifying and maximizing independence relations by means of discriminability criteria. The system has been extensively evaluated on the multispectral face database specifically performed for our purpose. On this regard, a new visualization procedure has been suggested in order to combine different bands for establishing valid comparisons and giving statistical information about the significance of the results. This experimental framework has more easily enabled the improvement of robustness against training and testing illumination mismatch. Additionally, focusing problem in thermal spectrum has been also addressed, firstly, for the more general case of the thermal images (or thermograms), and then for the case of facialthermograms from both theoretical and practical point of view. In order to analyze the quality of such facial thermograms degraded by blurring, an appropriate algorithm has been successfully developed. Experimental results strongly support the proposed multispectral facial image fusion, achieving very high performance in several conditions. These results represent a new advance in providing a robust matching across changes in illumination, further inspiring highly accurate FR approaches in practical scenarios.El reconeixement facial (FR) ha estat àmpliament estudiat, degut tant als reptes fonamentals científics que suposa com a les aplicacions actuals i futures on requereix la identificació de les persones. Els sistemes de reconeixement facial tenen els avantatges de ser no intrusius,presentar un baix cost dels equips d’adquisició i no la no necessitat d’autorització per part de l’individu a l’hora de realitzar l'adquisició, entre les més importants. De totes maneres i malgrat els avenços aconseguits en els darrers anys i les diferents solucions proposades, el rendiment del FR encara no resulta satisfactori quan es requereixen condicions més exigents (diferents punts de vista, efectes de bloqueig, canvis en la il·luminació, condicions de llum extremes, etc.). Concretament, l'efecte d'aquestes variacions no controlades en les condicions d'il·luminació sobre les imatges facials condueix a una de les distorsions més accentuades sobre l'aparença facial. Aquesta tesi aborda el problema del FR en condicions d'il·luminació menys restringides. Per tal d'abordar el problema, hem adquirit una nova base de dades de cara multisessió i multiespectral en l'espectre infraroig visible, infraroig proper (NIR) i tèrmic (TIR), sota diferents condicions d'il·luminació. En primer lloc s'ha dut a terme una anàlisi teòrica utilitzant la teoria de la informació per demostrar la complementarietat entre les diferents bandes espectrals objecte d’estudi. L'òptim aprofitament de la informació proporcionada pel conjunt d'imatges multiespectrals s'ha abordat posteriorment mitjançant l'ús de tècniques de fusió de puntuació multimodals, capaces de sintetitzar de manera eficient el conjunt d’informació significativa complementària entre els diferents espectres. A causa de les característiques particulars de les imatges tèrmiques, s’ha requerit del desenvolupament d’un algorisme específic per la segmentació de les mateixes. En el sistema proposat final, s’ha utilitzat com a eina de reducció de la dimensionalitat de les imatges, la Transformada del Cosinus Discreta i una distància fraccional per realitzar les tasques de classificació de manera que el cost en temps de processament i de memòria es va reduir de forma significa. Prèviament a aquesta tasca de classificació, es proposa una selecció de les bandes de freqüències més rellevants, basat en la identificació i la maximització de les relacions d'independència per mitjà de criteris discriminabilitat, per tal d'optimitzar el conjunt del sistema. El sistema ha estat àmpliament avaluat sobre la base de dades de cara multiespectral, desenvolupada pel nostre propòsit. En aquest sentit s'ha suggerit l’ús d’un nou procediment de visualització per combinar diferents bandes per poder establir comparacions vàlides i donar informació estadística sobre el significat dels resultats. Aquest marc experimental ha permès més fàcilment la millora de la robustesa quan les condicions d’il·luminació eren diferents entre els processos d’entrament i test. De forma complementària, s’ha tractat la problemàtica de l’enfocament de les imatges en l'espectre tèrmic, en primer lloc, pel cas general de les imatges tèrmiques (o termogrames) i posteriorment pel cas concret dels termogrames facials, des dels punt de vista tant teòric com pràctic. En aquest sentit i per tal d'analitzar la qualitat d’aquests termogrames facials degradats per efectes de desenfocament, s'ha desenvolupat un últim algorisme. Els resultats experimentals recolzen fermament que la fusió d'imatges facials multiespectrals proposada assoleix un rendiment molt alt en diverses condicions d’il·luminació. Aquests resultats representen un nou avenç en l’aportació de solucions robustes quan es contemplen canvis en la il·luminació, i esperen poder inspirar a futures implementacions de sistemes de reconeixement facial precisos en escenaris no controlats.Postprint (published version

    Human Recognition from Video Sequences and Off-Angle Face Images Supported by Respiration Signatures

    Get PDF
    In this work, we study the problem of human identity recognition using human respiratory waveforms extracted from videos combined with component-based off- angle human facial images. Our proposed system is composed of (i) a physiology- based human clustering module and (ii) an identification module based on facial features (nose, mouth, etc.) fetched from face videos. In our proposed methodology we, first, manage to passively extract an important vital sign (breath), cluster human subjects into nostril motion vs. nostril non-motion groups, and, then, localize a set of facial features, before we apply feature extraction and matching.;Our novel human identity recognition system is very robust, since it is working well when dealing with breath signals and a combination of different facial components acquired in uncontrolled luminous conditions. This is achieved by using our proposed Motion Classification approach and Feature Clustering technique based on the breathing waveforms we produce. The contributions of this work are three-fold. First, we collected a set of different datasets where we tested our proposed approach. Specifically, we considered six different types of facial components and their combination, to generate face-based video datasets, which present two diverse data collection conditions, i.e. videos acquired in head fully frontal position (baseline) and head looking up pose. Second, we propose a new way of passively measuring human breath from face videos and show comparatively identical output against baseline breathing waveforms produced by an ADInstruments device. Third, we demonstrate good human recognition performance when using the pro- posed pre-processing procedure of Motion Classification and Feature Clustering, working on partial features of human faces.;Our method achieves increased identification rates across all datasets used, and it manages to obtain a significantly high identification rate (ranging from 96%-100% when using a single or a combination of facial features), yielding an average of 7% raise, when compared to the baseline scenario. To the best of our knowledge, this is the first time that a biometric system is composed of an important human vital sign (breath) that is fused with facial features is such an efficient manner

    Face recognition for vehicle personalization

    Get PDF
    The objective of this dissertation is to develop a system of practical technologies to implement an illumination robust, consumer grade biometric system based on face recognition to be used in the automotive market. Most current face recognition systems are compromised in accuracy by ambient illumination changes. Especially outdoor applications including vehicle personalization pose the most challenging environment for face recognition. The point of this research is to investigate practical face recognition used for identity management in order to minimize algorithmic complexity while making the system robust to ambient illumination changes. We start this dissertation by proposing an end-to-end face recognition system using near infrared (NIR) spectrum. The advantage of NIR over visible light is that it is invisible to the human eyes while most CCD and CMOS imaging devices show reasonable response to NIR. Therefore, we can build an unobtrusive night-time vision system with active NIR illumination. In day time the active NIR illumination provides more controlled illumination condition. Next, we propose an end-to-end system with active NIR image differencing which takes the difference between successive image frames, one illuminated and one not illuminated, to make the system more robust on illumination changes. Furthermore, we addresses several aspects of the problem in active NIR image differencing which are motion artifact and noise in the difference frame, namely how to efficiently and more accurately align the illuminated frame and ambient frame, and how to combine information in the difference frame and the illuminated frame. Finally, we conclude the dissertation by citing the contributions of the research and discussing the avenues for future work.Ph.D

    A Distributed Weighted Voting Approach for Accurate Eye Center Estimation

    Get PDF
    This paper proposes a novel approach for accurate estimation of eye center in face images. A distributed voting based approach in which every pixel votes is adopted for potential eye center candidates. The votes are distributed over a subset of pixels which lie in a direction which is opposite to gradient direction and the weightage of votes is distributed according to a novel mechanism.  First, image is normalized to eliminate illumination variations and its edge map is generated using Canny edge detector. Distributed voting is applied on the edge image to generate different eye center candidates. Morphological closing and local maxima search are used to reduce the number of candidates. A classifier based on spatial and intensity information is used to choose the correct candidates for the locations of eye center. The proposed approach was tested on BioID face database and resulted in better Iris detection rate than the state-of-the-art. The proposed approach is robust against illumination variation, small pose variations, presence of eye glasses and partial occlusion of eyes.Defence Science Journal, 2013, 63(3), pp.292-297, DOI:http://dx.doi.org/10.14429/dsj.63.276

    Multispectral iris recognition analysis: Techniques and evaluation

    Get PDF
    This thesis explores the benefits of using multispectral iris information acquired using a narrow-band multispectral imaging system. Commercial iris recognition systems typically sense the iridal reflection pertaining to the near-infrared (IR) range of the electromagnetic spectrum. While near-infrared imaging does give a very reasonable image of the iris texture, it only exploits a narrow band of spectral information. By incorporating other wavelength ranges (infrared, red, green, blue) in iris recognition systems, the reflectance and absorbance properties of the iris tissue can be exploited to enhance recognition performance. Furthermore, the impact of eye color on iris matching performance can be determined. In this work, a multispectral iris image acquisition system was assembled in order to procure data from human subjects. Multispectral images pertaining to 70 different eyes (35 subjects) were acquired using this setup. Three different iris localization algorithms were developed in order to isolate the iris information from the acquired images. While the first technique relied on the evidence presented by a single spectral channel (viz., near-infrared), the other two techniques exploited the information represented in multiple channels. Experimental results confirm the benefits of utilizing multiple channel information for iris segmentation. Next, an image enhancement technique using the CIE L*a*b* histogram equalization method was designed to improve the quality of the multispectral images. Further, a novel encoding method based on normalized pixel intensities was developed to represent the segmented iris images. The proposed encoding algorithm, when used in conjunction with the traditional texture-based scheme, was observed to result in very good matching performance. The work also explored the matching interoperability of iris images across multiple channels. This thesis clearly asserts the benefits of multispectral iris processing, and provides a foundation for further research in this topic

    Thermal Cameras and Applications:A Survey

    Get PDF
    • …
    corecore