901 research outputs found

    Low Complexity Decoding for Higher Order Punctured Trellis-Coded Modulation Over Intersymbol Interference Channels

    Full text link
    Trellis-coded modulation (TCM) is a power and bandwidth efficient digital transmission scheme which offers very low structural delay of the data stream. Classical TCM uses a signal constellation of twice the cardinality compared to an uncoded transmission with one bit of redundancy per PAM symbol, i.e., application of codes with rates n1n\frac{n-1}{n} when 2n2^{n} denotes the cardinality of the signal constellation. Recently published work allows rate adjustment for TCM by means of puncturing the convolutional code (CC) on which a TCM scheme is based on. In this paper it is shown how punctured TCM-signals transmitted over intersymbol interference (ISI) channels can favorably be decoded. Significant complexity reductions at only minor performance loss can be achieved by means of reduced state sequence estimation.Comment: 4 pages, 5 figures, 3 algorithms, accepted and published at 6th International Symposium on Communications, Control, and Signal Processing (ISCCSP 2014

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    M-ary Coded Mouldation Assisted Genetic Algorithm Based Multiuser Detection for CDMA Systems

    No full text
    In this contribution we propose a novel M-ary Coded Modulation assisted Genetic Algorithm based Multiuser Detection (CM-GA-MUD) scheme for synchronous CDMA systems. The performance of the proposed scheme was investigated using Quadrature-Phase-Shift-Keying (QPSK), 8-level PSK (8PSK) and 16-level Quadrature Amplitude Modulation (16QAM) when communicating over AWGN and narrowband Rayleigh fading channels. When compared with the optimum MUD scheme, the GAMUD subsystem is capable of reducing the computational complexity significantly. On the other hand, the CM subsystem is capable of obtaining considerable coding gains despite being fed with sub-optimal information provided by the GA-MUD output

    A Suboptimal Receiver with Turbo Block Coding for Ultra-Wideband Communications

    Get PDF
    In this paper, the performance of adaptive equalization and turbo product coding is investigated for pulse-based UWB communications in short-range indoor environments. The sensitivity of adaptive LMS linear and nonlinear (decision-feedback) equalizers with respect to the number of training symbols and number of taps is considered. To reduce the error performance variation with respect to changing channel conditions, a turbo product code (TPC) with two component (31,26,3) Hamming codes is proposed. We report simulation results showing that channel coding not only improves error performance, but also reduces significantly the sensitivity of UWB systems in short-range indoor wireless communications

    Using Channel Output Feedback to Increase Throughput in Hybrid-ARQ

    Full text link
    Hybrid-ARQ protocols have become common in many packet transmission systems due to their incorporation in various standards. Hybrid-ARQ combines the normal automatic repeat request (ARQ) method with error correction codes to increase reliability and throughput. In this paper, we look at improving upon this performance using feedback information from the receiver, in particular, using a powerful forward error correction (FEC) code in conjunction with a proposed linear feedback code for the Rayleigh block fading channels. The new hybrid-ARQ scheme is initially developed for full received packet feedback in a point-to-point link. It is then extended to various different multiple-antenna scenarios (MISO/MIMO) with varying amounts of packet feedback information. Simulations illustrate gains in throughput.Comment: 30 page

    Hybrid ARQ with parallel and serial concatenated convolutional codes for next generation wireless communications

    Get PDF
    This research focuses on evaluating the currently used FEC encoding-decoding schemes and improving the performance of error control systems by incorporating these schemes in a hybrid FEC-ARQ environment. Beginning with an overview of wireless communications and the various ARQ protocols, the thesis provides an in-depth explanation of convolutional encoding and Viterbi decoding, turbo (PCCC) and serial concatenated convolutional (SCCC) encoding with their respective MAP decoding strategies.;A type-II hybrid ARQ scheme with SCCCs is proposed for the first time and is a major contribution of this thesis. A vast improvement is seen in the BER performance of the successive individual FEC schemes discussed above. Also, very high throughputs can be achieved when these schemes are incorporated in an adaptive type-II hybrid ARQ system.;Finally, the thesis discusses the equivalence of the PCCCs and the SCCCs and proposes a technique to generate a hybrid code using both schemes
    corecore