1,120 research outputs found

    Supervised Machine Learning for Signals Having RRC Shaped Pulses

    Full text link
    Classification performances of the supervised machine learning techniques such as support vector machines, neural networks and logistic regression are compared for modulation recognition purposes. The simple and robust features are used to distinguish continuous-phase FSK from QAM-PSK signals. Signals having root-raised-cosine shaped pulses are simulated in extreme noisy conditions having joint impurities of block fading, lack of symbol and sampling synchronization, carrier offset, and additive white Gaussian noise. The features are based on sample mean and sample variance of the imaginary part of the product of two consecutive complex signal values.Comment: 5 page

    Does the Cross-Talk Between Nonlinear Modes Limit the Performance of NFDM Systems?

    Full text link
    We show a non-negligible cross-talk between nonlinear modes in Nonlinear Frequency-Division Multiplexed system when data is modulated over the nonlinear Fourier spectrum, both the continuous spectrum and the discrete spectrum, and transmitted over a lumped amplified fiber link. We evaluate the performance loss if the cross-talks are neglected.Comment: Invited paper, European Conference on Optical Communication (ECOC 2017), Sept. 2017, p. Th.1.D.

    Conjugate-Root Offset-QAM for Orthogonal Multicarrier Transmission

    Get PDF
    Current implementations of OFDM/OQAM are restricted to band-limited symmetric filters. To circumvent this, non-symmetric conjugate root (CR) filters are proposed for OQAM modulation. The system is applied to Generalized Frequency Division Multiplexing (GFDM) and a method for achieving transmit diversity with OQAM modulation is presented. The proposal reduces implementation complexity compared to existing works and provides a more regular phase space. GFDM/CR-OQAM outperforms conventional GFDM in terms of symbol error rate in fading multipath channels and provides a more localized spectrum compared to conventional OQAM.Comment: 4pages, revised version submitted to IEEE WC

    Notes on analogue and digital amplitude modulation

    Get PDF
    Notes on AM, DSBSC, QAM, BPSK, 4QAM, 8PSK, 16QA

    Constellation Shaping for WDM systems using 256QAM/1024QAM with Probabilistic Optimization

    Get PDF
    In this paper, probabilistic shaping is numerically and experimentally investigated for increasing the transmission reach of wavelength division multiplexed (WDM) optical communication system employing quadrature amplitude modulation (QAM). An optimized probability mass function (PMF) of the QAM symbols is first found from a modified Blahut-Arimoto algorithm for the optical channel. A turbo coded bit interleaved coded modulation system is then applied, which relies on many-to-one labeling to achieve the desired PMF, thereby achieving shaping gain. Pilot symbols at rate at most 2% are used for synchronization and equalization, making it possible to receive input constellations as large as 1024QAM. The system is evaluated experimentally on a 10 GBaud, 5 channels WDM setup. The maximum system reach is increased w.r.t. standard 1024QAM by 20% at input data rate of 4.65 bits/symbol and up to 75% at 5.46 bits/symbol. It is shown that rate adaptation does not require changing of the modulation format. The performance of the proposed 1024QAM shaped system is validated on all 5 channels of the WDM signal for selected distances and rates. Finally, it was shown via EXIT charts and BER analysis that iterative demapping, while generally beneficial to the system, is not a requirement for achieving the shaping gain.Comment: 10 pages, 12 figures, Journal of Lightwave Technology, 201
    • …
    corecore