325 research outputs found

    Suitability of Pulse Train™, A Novel Digitally Implemented Real-Time Control Technique, for BIFRED Converter

    Get PDF
    Pulse TrainTM, a new control scheme, is presented and applied to a BIFRED converter operating in discontinuous conduction mode (DCM), which avoids the light-load high-voltage stress problem. In contrast to the conventional control techniques, the principal idea of Pulse Train is to regulate the output voltage using a series of high and low energy pulses generated by the current of the inductor. In this paper, applicability of the proposed technique to both the input and magnetizing inductances of BIFRED converter is investigated. Analysis of BIFRED converter operating in DCM as well as the output voltage ripple estimation are given. Experimental results on a prototype converter are also presented

    Control Strategies of DC–DC Converter in Fuel Cell Electric Vehicle

    Get PDF
    There is a significant need to research and develop a compatible controller for the DC–DC converter used in fuel cells electric vehicles (EVs). Research has shown that fuel cells (FC) EVs have the potential of providing a far more promising performance in comparison to conventional combustion engine vehicles. This study aims to present a universal sliding mode control (SMC) technique to control the DC bus voltage under varying load conditions. Additionally, this research will utilize improved DC–DC converter topologies to boost the output voltage of the FCs. A DC–DC converter with a properly incorporated control scheme can be utilized to regulate the DC bus voltage–. A conventional linear controller, like a PID controller, is not suitable to be used as a controller to regulate the output voltage in the proposed application. This is due to the nonlinearity of the converter. Furthermore, this thesis will explore the use of a secondary power source which will be utilized during the start–up and transient condition of the FCEV. However, in this instance, a simple boost converter can be used as a reference to step–up the fuel cell output voltage. In terms of application, an FCEV requires stepping –up of the voltage through the use of a high power DC–DC converter or chopper. A control scheme must be developed to adjust the DC bus or load voltage to meet the vehicle requirements as well as to improve the overall efficiency of the FCEV. A simple SMC structure can be utilized to handle these issues and stabilize the output voltage of the DC–DC converter to maintain and establish a constant DC–link voltage during the load variations. To address the aforementioned issues, this thesis presents a sliding mode control technique to control the DC bus voltage under varying load conditions using improved DC–DC converter topologies to boost and stabilize the output voltage of the FCs

    Modeling and Analysis of Power Processing Systems (MAPPS). Volume 1: Technical report

    Get PDF
    Computer aided design and analysis techniques were applied to power processing equipment. Topics covered include: (1) discrete time domain analysis of switching regulators for performance analysis; (2) design optimization of power converters using augmented Lagrangian penalty function technique; (3) investigation of current-injected multiloop controlled switching regulators; and (4) application of optimization for Navy VSTOL energy power system. The generation of the mathematical models and the development and application of computer aided design techniques to solve the different mathematical models are discussed. Recommendations are made for future work that would enhance the application of the computer aided design techniques for power processing systems

    Modeling and Analysis of Power Processing Systems (MAPPS), initial phase 2

    Get PDF
    The overall objective of the program is to provide the engineering tools to reduce the analysis, design, and development effort, and thus the cost, in achieving the required performances for switching regulators and dc-dc converter systems. The program was both tutorial and application oriented. Various analytical methods were described in detail and supplemented with examples, and those with standardization appeals were reduced into computer-based subprograms. Major program efforts included those concerning small and large signal control-dependent performance analysis and simulation, control circuit design, power circuit design and optimization, system configuration study, and system performance simulation. Techniques including discrete time domain, conventional frequency domain, Lagrange multiplier, nonlinear programming, and control design synthesis were employed in these efforts. To enhance interactive conversation between the modeling and analysis subprograms and the user, a working prototype of the Data Management Program was also developed to facilitate expansion as future subprogram capabilities increase

    Design of discrete time controllers for DC-DC boost converter

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.DC-DC dönüştürücüler sahip oldukları yüksek verim, yüksek güç yoğunluğu, yüksek güç seviyeleri, düşük maliyet ve küçük fiziksel yapı özelliklerinden dolayı modern güç elektroniği sistemlerinde yaygın olarak kullanılmaktadırlar. Genel olarak alçaltıcı, yükseltici ve alçaltıcı/yükseltici tipinde olabilen dönüştürücüler çoklu çıkış gerilimine sahip olabilmektedirler. Yükseltici dönüşürücüler, giriş geriliminden daha yüksek bir çıkış gerilimi üreten bir tür anahtarlamalı-modlu dc-dc dönüştürücülerdir. Yükseltici tip DC-DC dönüştürücünün ortalama durum-uzay tekniğine dayalı küçük-sinyal modeli elde edilmiştir. Ayrık-zaman kontrolör iki ayı yöntem, frekans domeni ve durum-uzay yöntemleri, kullanılarak tasarlanmıştır. Kök-yer eğrisi yöntemi ile integral kontrolör tasarlanmıştır. Durum geribesleme kazanç matrisi hem kutup yerleştirme hem de doğrusal optimal kuadratik regülatör yaklaşımları kullanılarak tasarlanmıştır. Kontrolcülü yükseltici dönüştürücünün performansı MATLAB/SIMULINK ortamında yapılan similasyon çalışmaları ile incelenmiş ve doğrulanmıştır. Tasarlanan kontrolör türleri tasarım metodolojisi, uygulama problemleri ve performans açısından karşılaştırılmıştır. Tasarlanan kontrol yöntemlerinin birbirine yakın bir performansa sahip olduğu gözlemlenmiştir. Bu çalışmada, yükseltici tip DC-DC dönüştürücüler için sürekli-hal ve dinamik karakteristik açısından uygun bir performansa sahip kontrolör tasarımı amaçlanmıştır.DC-DC converters are extensively used in modern power electronics devices due to their high efficiency, high power density, high power levels, low cost, and small size. In general, they can be step-up, step-down or step-up/down converters and can have multiple output voltages. Boost converter, (also known as a step-up converter) is a type of switched-mode dc-dc converter which produces output voltage that is greater than input voltage. A small signal modeling based on state space averaging technique for DC-DC Boost converter is carried out. Discrete time controller is designed using two design techniques; frequency domain and state space methods. Root locus technique is used to design an integral controller. A state feedback gain matrix is designed by pole placement technique and Linear Quadratic Optimal Regulator (LQR) methods. The performance of the controlled boost converter are investigated and verified through MATLAB/SIMULINK simulation. Comparison between the designed controllers related to the design methodology, implementation issues and performance is carried out. It is seen that the designed controllers yielded comparable performances. In this study, it is aimed to design a controller for DC-DC boost converter to provide satisfactory performance in term of static, dynamic and steady-state characteristics

    Modeling and identification of power electronic converters

    Get PDF
    Nowadays, many industries are moving towards more electrical systems and components. This is done with the purpose of enhancing the efficiency of their systems while being environmentally friendlier and sustainable. Therefore, the development of power electronic systems is one of the most important points of this transition. Many manufacturers have improved their equipment and processes in order to satisfy the new necessities of the industries (aircraft, automotive, aerospace, telecommunication, etc.). For the particular case of the More Electric Aircraft (MEA), there are several power converters, inverters and filters that are usually acquired from different manufacturers. These are switched mode power converters that feed multiple loads, being a critical element in the transmission systems. In some cases, these manufacturers do not provide the sufficient information regarding the functionality of the devices such as DC/DC power converters, rectifiers, inverters or filters. Consequently, there is the need to model and identify the performance of these components to allow the aforementioned industries to develop models for the design stage, for predictive maintenance, for detecting possible failures modes, and to have a better control over the electrical system. Thus, the main objective of this thesis is to develop models that are able to describe the behavior of power electronic converters, whose parameters and/or topology are unknown. The algorithms must be replicable and they should work in other types of converters that are used in the power electronics field. The thesis is divided in two main cores, which are the parameter identification for white-box models and the black-box modeling of power electronics devices. The proposed approaches are based on optimization algorithms and deep learning techniques that use non-intrusive measurements to obtain a set of parameters or generate a model, respectively. In both cases, the algorithms are trained and tested using real data gathered from converters used in aircrafts and electric vehicles. This thesis also presents how the proposed methodologies can be applied to more complex power systems and for prognostics tasks. Concluding, this thesis aims to provide algorithms that allow industries to obtain realistic and accurate models of the components that they are using in their electrical systems.En la actualidad, el uso de sistemas y componentes eléctricos complejos se extiende a múltiples sectores industriales. Esto se hace con el propósito de mejorar su eficiencia y, en consecuencia, ser más sostenibles y amigables con el medio ambiente. Por tanto, el desarrollo de sistemas electrónicos de potencia es uno de los puntos más importantes de esta transición. Muchos fabricantes han mejorado sus equipos y procesos para satisfacer las nuevas necesidades de las industrias (aeronáutica, automotriz, aeroespacial, telecomunicaciones, etc.). Para el caso particular de los aviones más eléctricos (MEA, por sus siglas en inglés), existen varios convertidores de potencia, inversores y filtros que suelen adquirirse a diferentes fabricantes. Se trata de convertidores de potencia de modo conmutado que alimentan múltiples cargas, siendo un elemento crítico en los sistemas de transmisión. En algunos casos, estos fabricantes no proporcionan la información suficiente sobre la funcionalidad de los dispositivos como convertidores de potencia DC-DC, rectificadores, inversores o filtros. En consecuencia, existe la necesidad de modelar e identificar el desempeño de estos componentes para permitir que las industrias mencionadas desarrollan modelos para la etapa de diseño, para el mantenimiento predictivo, para la detección de posibles modos de fallas y para tener un mejor control del sistema eléctrico. Así, el principal objetivo de esta tesis es desarrollar modelos que sean capaces de describir el comportamiento de un convertidor de potencia, cuyos parámetros y/o topología se desconocen. Los algoritmos deben ser replicables y deben funcionar en otro tipo de convertidores que se utilizan en el campo de la electrónica de potencia. La tesis se divide en dos núcleos principales, que son la identificación de parámetros de los convertidores y el modelado de caja negra (black-box) de dispositivos electrónicos de potencia. Los enfoques propuestos se basan en algoritmos de optimización y técnicas de aprendizaje profundo que utilizan mediciones no intrusivas de las tensiones y corrientes de los convertidores para obtener un conjunto de parámetros o generar un modelo, respectivamente. En ambos casos, los algoritmos se entrenan y prueban utilizando datos reales recopilados de convertidores utilizados en aviones y vehículos eléctricos. Esta tesis también presenta cómo las metodologías propuestas se pueden aplicar a sistemas eléctricos más complejos y para tareas de diagnóstico. En conclusión, esta tesis tiene como objetivo proporcionar algoritmos que permitan a las industrias obtener modelos realistas y precisos de los componentes que están utilizando en sus sistemas eléctricos.Postprint (published version

    Three-Phase Reduced Switch Topologies for AC-DC Front-End and Single-Stage Converters

    Get PDF
    Conventional three-phase ac-dc converters have two converter stages. They have a front-end converter that converts the input ac voltage into an intermediate dc bus voltage and a second, back-end converter that converts this dc bus voltage into the desired isolated dc output voltage. The front-end converter also performs power factor correction (PFC) and shapes the three-phase input currents so that they are nearly sinusoidal and in phase with the three-phase input voltages. This allows the ac power source to be used in the most efficient manner. The front-end ac-dc converter is typically implemented with six switches while the back-end dc-dc converter is typically implemented with a four switch dc-dc full-bridge topology. Power electronic researchers have been motivated to try to reduce the number of switches that are used in the conventional two-stage approach in order to reduce cost and simplify the overall ac-dc converter. There are two general approaches to doing this: This first approach is to reduce the number of switches in the front-end ac-dc converter. The second approach is to combine the ac-dc converter and the dc-dc converter in a single converter so that the overall ac-dc converter can be implemented in a single converter stage that can simultaneously perform ac-dc power conversion with PFC and dc-dc power conversion. The main focus of this thesis is on new power converter topologies that convert a three-phase ac input voltage into an isolated dc output voltage with a reduced number of switches. In the thesis, a new family of reduced switch front-end converter topologies is proposed, an example converter from this new family is selected for further study and a modified version of this topology is studied as well. In addition to these front-end converters, two new three-phase ac-dc single-stage converters are proposed and their properties and characteristics are compared. For each new converter that is investigated in detail, its modes of operation are explained, its steady-state characteristics are determined by mathematical analysis, and the results of the analysis are used to develop a design procedure that can be used to select key components. The design procedure of each new converter is demonstrated with an example that was used in the implementation of an experimental prototype that confirmed the feasibility of the converter. The thesis concludes by presenting that have been reached as a result of the work that was performed, stating its main contributions to the power electronics literature and suggesting future research that can be done based on the thesis work

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Design and implementation of multi-port DC-DC converters for electrical power systems

    Get PDF
    The thesis proposes developing, analysing, and verifying these DC-DC converters to improve the current state-of-the-art topology. Four new DC-DC converters for applications like light emitting diode, lighting microgrids DC, PV applications, and electric vehicles are as follows. In this study, the two-input converter is presented. The two-input converter that has been proposed serves as the interface between the two input sources and load. Using two switches and two diodes, the proposed converter minimises switching losses and contains eight components in total, making it compact and low volume. As a result, the highest average efficiency is 92.5%, and the lowest is 89.6%. In this research, the new three-port converter that has been proposed serves as the interface between the input source, a battery, and a load. In addition, the converter is suitable for use in standalone systems or satellite applications. A low-volume converter is designed with three switches and two diodes, thereby minimizing switching losses and ten components in total. Regarding efficiency, the highest average is 92.5%, and the lowest is 90.9%. Also, this study proposes a single-switch high-step-up converter for LED drivers and PV applications. A further benefit of the proposed converter over conventional classical converters is that it utilises only one active switch. These results align with simulation results, and its gain is 6.8 times greater than classical converters. Furthermore, stress across switches and diodes is smaller than the output voltage, approximately 50%. Semiconductor losses were limited with a low duty cycle of 0.7. This makes the highest average efficiency 95% and the lowest 93.9%. The new four-port converter is presented for applications such as microgrid structures and electric vehicles. As part of the integrated converter, two or three converters are combined by sharing some components, such as switches, inductors, and capacitors, to form a single integrated converter. As a result of the four-port converter proposed, battery power can be managed, and output voltage can be regulated simultaneously
    corecore