6,464 research outputs found

    A rocket-borne airglow photometer

    Get PDF
    The design of a rocket-borne photometer to measure the airglow emission of ionized molecular nitrogen in the 391.4 nm band is presented. This airglow is a well known and often observed phenomenon of auroras, where the principal source of ionization is energetic electrons. It is believed that at some midlatitude locations energetic electrons are also a source of nighttime ionization in the E region of the ionosphere. If this is so, then significant levels of 391.4 nm airglow should be present. The intensity of this airglow will be measured in a rocket payload which also contains instrumentation to measured in a rocket payload which also contains instrumentation to measure energetic electron differential flux and the ambient electron density. An intercomparison of the 3 experiments in a nightime launch will allow a test of the importance of energetic electrons as a nighttime source of ionization in the upper E region

    Optimal control of Rydberg lattice gases

    Full text link
    We present optimal control protocols to prepare different many-body quantum states of Rydberg atoms in optical lattices. Specifically, we show how to prepare highly ordered many-body ground states, GHZ states as well as some superposition of symmetric excitation number Fock states, that inherit the translational symmetry from the Hamiltonian, within sufficiently short excitation times minimizing detrimental decoherence effects. For the GHZ states, we propose a two-step detection protocol to experimentally verify the optimal preparation of the target state based only on standard measurement techniques. Realistic experimental constraints and imperfections are taken into account by our optimization procedure making it applicable to ongoing experiments.Comment: Accepted versio

    Wave trains, self-oscillations and synchronization in discrete media

    Full text link
    We study wave propagation in networks of coupled cells which can behave as excitable or self-oscillatory media. For excitable media, an asymptotic construction of wave trains is presented. This construction predicts their shape and speed, as well as the critical coupling and the critical separation of time scales for propagation failure. It describes stable wave train generation by repeated firing at a boundary. In self-oscillatory media, wave trains persist but synchronization phenomena arise. An equation describing the evolution of the oscillator phases is derived.Comment: to appear in Physica D: Nonlinear Phenomen

    Edge Contours

    Get PDF
    The accuracy with which a computer vision system is able to identify objects in an image is heavily dependent upon the accuracy of the low level processes that identify which points lie on the edges of an object. In order to remove noise and fine texture from an image, it is usually smoothed before edge detection is performed. This smoothing causes edges to be displaced from their actual location in the image. Knowledge about the changes that occur with different degrees of smoothing (scales) and the physical conditions that cause these changes is essential to proper interpretation of the results obtained. In this work the amount of delocalization and the magnitude of the response to the Normalized Gradient of Gaussian operator are analyzed as a function of σ, the standard deviation of the Gaussian. As a result of this analysis it was determined that edge points could be characterized as to slope, contrast, and proximity to other edges. The analysis is also used to define the size that the neighborhood of an edge point must be in order to assure its containing the delocalized edge point at another scale when σ is known. Given this theoretical background, an algorithm was developed to obtain sequential lists of edge points. This used multiple scales in order to achieve the superior localization and detection of weak edges possible with smaller scales combined with the noise suppression of the larger scales. The edge contours obtained with this method are significantly better than those achieved with a single scale. A second algorithm was developed to allow sets of edge contour points to be represented as active contours so that interaction with a higher level process is possible. This higher level process could do such things as determine where corners or discontinuities could appear. The algorithm developed here allows hard constraints and represents a significant improvement in speed over previous algorithms allowing hard constraints, being linear rather than cubic

    Synchronization of Coupled Boolean Phase Oscillators

    Full text link
    We design, characterize, and couple Boolean phase oscillators that include state-dependent feedback delay. The state-dependent delay allows us to realize an adjustable coupling strength, even though only Boolean signals are exchanged. Specifically, increasing the coupling strength via the range of state-dependent delay leads to larger locking ranges in uni- and bi-directional coupling of oscillators in both experiment and numerical simulation with a piecewise switching model. In the unidirectional coupling scheme, we unveil asymmetric triangular-shaped locking regions (Arnold tongues) that appear at multiples of the natural frequency of the oscillators. This extends observations of a single locking region reported in previous studies. In the bidirectional coupling scheme, we map out a symmetric locking region in the parameter space of frequency detuning and coupling strength. Because of large scalability of our setup, our observations constitute a first step towards realizing large-scale networks of coupled oscillators to address fundamental questions on the dynamical properties of networks in a new experimental setting.Comment: 8 pages, 8 figure

    SERCA is critical to control the Bowditch effect in the heart

    Get PDF
    The Bowditch effect or staircase phenomenon is the increment or reduction of contractile force when heart rate increases, defined as either a positive or negative staircase. The healthy and failing human heart both show positive or negative staircase, respectively, but the causes of these distinct cardiac responses are unclear. Different experimental approaches indicate that while the level of Ca2+ in the sarcoplasmic reticulum is critical, the molecular mechanisms are unclear. Here, we demonstrate that Drosophila melanogaster shows a negative staircase which is associated to a slight but significant frequency-dependent acceleration of relaxation (FDAR) at the highest stimulation frequencies tested. We further showed that the type of staircase is oppositely modified by two distinct SERCA mutations. The dominant conditional mutation SERCAA617T induced positive staircase and arrhythmia, while SERCAE442K accentuated the negative staircase of wild type. At the stimulation frequencies tested, no significant FDAR could be appreciated in mutant flies. The present results provide evidence that two individual mutations directly modify the type of staircase occurring within the heart and suggest an important role of SERCA in regulating the Bowditch effect.Fil: Balcazar, Dario Emmanuel. Universidad Nacional de La Plata; ArgentinaFil: Regge, María Victoria. Universidad Nacional de La Plata; ArgentinaFil: Santalla, Manuela. Universidad Nacional de La Plata; ArgentinaFil: Behrensmeyer, Anna Kay. Universität Osnabrück;Fil: Achimón, Fernanda. Universität Osnabrück;Fil: Mattiazzi, Ramona Alicia. Universidad Nacional de La Plata; ArgentinaFil: Ferrero, Paola Viviana. Universidad Nacional de La Plata; Argentin

    An experimental effort to improve the Nimbus high resolution infrared radiometer Final report, 1 May 1964 - 15 Feb. 1965

    Get PDF
    Electronics modifications and improved detector cooling for Nimbus high resolution infrared radiomete

    Spatially Coupled Codes and Optical Fiber Communications: An Ideal Match?

    Full text link
    In this paper, we highlight the class of spatially coupled codes and discuss their applicability to long-haul and submarine optical communication systems. We first demonstrate how to optimize irregular spatially coupled LDPC codes for their use in optical communications with limited decoding hardware complexity and then present simulation results with an FPGA-based decoder where we show that very low error rates can be achieved and that conventional block-based LDPC codes can be outperformed. In the second part of the paper, we focus on the combination of spatially coupled LDPC codes with different demodulators and detectors, important for future systems with adaptive modulation and for varying channel characteristics. We demonstrate that SC codes can be employed as universal, channel-agnostic coding schemes.Comment: Invited paper to be presented in the special session on "Signal Processing, Coding, and Information Theory for Optical Communications" at IEEE SPAWC 201
    • …
    corecore