1,827 research outputs found

    Pulse Sequence Resilient Fast Brain Segmentation

    Full text link
    Accurate automatic segmentation of brain anatomy from T1T_1-weighted~(T1T_1-w) magnetic resonance images~(MRI) has been a computationally intensive bottleneck in neuroimaging pipelines, with state-of-the-art results obtained by unsupervised intensity modeling-based methods and multi-atlas registration and label fusion. With the advent of powerful supervised convolutional neural networks~(CNN)-based learning algorithms, it is now possible to produce a high quality brain segmentation within seconds. However, the very supervised nature of these methods makes it difficult to generalize them on data different from what they have been trained on. Modern neuroimaging studies are necessarily multi-center initiatives with a wide variety of acquisition protocols. Despite stringent protocol harmonization practices, it is not possible to standardize the whole gamut of MRI imaging parameters across scanners, field strengths, receive coils etc., that affect image contrast. In this paper we propose a CNN-based segmentation algorithm that, in addition to being highly accurate and fast, is also resilient to variation in the input T1T_1-w acquisition. Our approach relies on building approximate forward models of T1T_1-w pulse sequences that produce a typical test image. We use the forward models to augment the training data with test data specific training examples. These augmented data can be used to update and/or build a more robust segmentation model that is more attuned to the test data imaging properties. Our method generates highly accurate, state-of-the-art segmentation results~(overall Dice overlap=0.94), within seconds and is consistent across a wide-range of protocols.Comment: Accepted at MICCAI 201

    PSACNN: Pulse Sequence Adaptive Fast Whole Brain Segmentation

    Full text link
    With the advent of convolutional neural networks~(CNN), supervised learning methods are increasingly being used for whole brain segmentation. However, a large, manually annotated training dataset of labeled brain images required to train such supervised methods is frequently difficult to obtain or create. In addition, existing training datasets are generally acquired with a homogeneous magnetic resonance imaging~(MRI) acquisition protocol. CNNs trained on such datasets are unable to generalize on test data with different acquisition protocols. Modern neuroimaging studies and clinical trials are necessarily multi-center initiatives with a wide variety of acquisition protocols. Despite stringent protocol harmonization practices, it is very difficult to standardize the gamut of MRI imaging parameters across scanners, field strengths, receive coils etc., that affect image contrast. In this paper we propose a CNN-based segmentation algorithm that, in addition to being highly accurate and fast, is also resilient to variation in the input acquisition. Our approach relies on building approximate forward models of pulse sequences that produce a typical test image. For a given pulse sequence, we use its forward model to generate plausible, synthetic training examples that appear as if they were acquired in a scanner with that pulse sequence. Sampling over a wide variety of pulse sequences results in a wide variety of augmented training examples that help build an image contrast invariant model. Our method trains a single CNN that can segment input MRI images with acquisition parameters as disparate as T1T_1-weighted and T2T_2-weighted contrasts with only T1T_1-weighted training data. The segmentations generated are highly accurate with state-of-the-art results~(overall Dice overlap=0.94=0.94), with a fast run time~(≈\approx 45 seconds), and consistent across a wide range of acquisition protocols.Comment: Typo in author name corrected. Greves -> Grev

    Partial Volume Segmentation of Brain MRI Scans of any Resolution and Contrast

    Full text link
    Partial voluming (PV) is arguably the last crucial unsolved problem in Bayesian segmentation of brain MRI with probabilistic atlases. PV occurs when voxels contain multiple tissue classes, giving rise to image intensities that may not be representative of any one of the underlying classes. PV is particularly problematic for segmentation when there is a large resolution gap between the atlas and the test scan, e.g., when segmenting clinical scans with thick slices, or when using a high-resolution atlas. In this work, we present PV-SynthSeg, a convolutional neural network (CNN) that tackles this problem by directly learning a mapping between (possibly multi-modal) low resolution (LR) scans and underlying high resolution (HR) segmentations. PV-SynthSeg simulates LR images from HR label maps with a generative model of PV, and can be trained to segment scans of any desired target contrast and resolution, even for previously unseen modalities where neither images nor segmentations are available at training. PV-SynthSeg does not require any preprocessing, and runs in seconds. We demonstrate the accuracy and flexibility of the method with extensive experiments on three datasets and 2,680 scans. The code is available at https://github.com/BBillot/SynthSeg.Comment: accepted for MICCAI 202

    Improving the Tractography Pipeline: on Evaluation, Segmentation, and Visualization

    Get PDF
    Recent advances in tractography allow for connectomes to be constructed in vivo. These have applications for example in brain tumor surgery and understanding of brain development and diseases. The large size of the data produced by these methods lead to a variety problems, including how to evaluate tractography outputs, development of faster processing algorithms for tractography and clustering, and the development of advanced visualization methods for verification and exploration. This thesis presents several advances in these fields. First, an evaluation is presented for the robustness to noise of multiple commonly used tractography algorithms. It employs a Monte–Carlo simulation of measurement noise on a constructed ground truth dataset. As a result of this evaluation, evidence for obustness of global tractography is found, and algorithmic sources of uncertainty are identified. The second contribution is a fast clustering algorithm for tractography data based on k–means and vector fields for representing the flow of each cluster. It is demonstrated that this algorithm can handle large tractography datasets due to its linear time and memory complexity, and that it can effectively integrate interrupted fibers that would be rejected as outliers by other algorithms. Furthermore, a visualization for the exploration of structural connectomes is presented. It uses illustrative rendering techniques for efficient presentation of connecting fiber bundles in context in anatomical space. Visual hints are employed to improve the perception of spatial relations. Finally, a visualization method with application to exploration and verification of probabilistic tractography is presented, which improves on the previously presented Fiber Stippling technique. It is demonstrated that the method is able to show multiple overlapping tracts in context, and correctly present crossing fiber configurations

    Nonlinear Markov Random Fields Learned via Backpropagation

    Full text link
    Although convolutional neural networks (CNNs) currently dominate competitions on image segmentation, for neuroimaging analysis tasks, more classical generative approaches based on mixture models are still used in practice to parcellate brains. To bridge the gap between the two, in this paper we propose a marriage between a probabilistic generative model, which has been shown to be robust to variability among magnetic resonance (MR) images acquired via different imaging protocols, and a CNN. The link is in the prior distribution over the unknown tissue classes, which are classically modelled using a Markov random field. In this work we model the interactions among neighbouring pixels by a type of recurrent CNN, which can encode more complex spatial interactions. We validate our proposed model on publicly available MR data, from different centres, and show that it generalises across imaging protocols. This result demonstrates a successful and principled inclusion of a CNN in a generative model, which in turn could be adapted by any probabilistic generative approach for image segmentation.Comment: Accepted for the international conference on Information Processing in Medical Imaging (IPMI) 2019, camera ready versio
    • …
    corecore