64 research outputs found

    Power Electronics in Renewable Energy Systems

    Get PDF

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    Stability analysis and control of DC-DC converters using nonlinear methodologies

    Get PDF
    PhD ThesisSwitched mode DC-DC converters exhibit a variety of complex behaviours in power electronics systems, such as sudden changes in operating region, bifurcation and chaotic operation. These unexpected random-like behaviours lead the converter to function outside of the normal periodic operation, increasing the potential to generate electromagnetic interference degrading conversion efficiency and in the worst-case scenario a loss of control leading to catastrophic failure. The rapidly growing market for switched mode power DC-DC converters demands more functionality at lower cost. In order to achieve this, DC-DC converters must operate reliably at all load conditions including boundary conditions. Over the last decade researchers have focused on these boundary conditions as well as nonlinear phenomena in power switching converters, leading to different theoretical and analytical approaches. However, the most interesting results are based on abstract mathematical forms, which cannot be directly applied to the design of practical systems for industrial applications. In this thesis, an analytic methodology for DC-DC converters is used to fully determine the inherent nonlinear dynamics. System stability can be indicated by the derived Monodromy matrix which includes comprehensive information concerning converter parameters and the control loop. This methodology can be applied in further stability analysis, such as of the influence of parasitic parameters or the effect of constant power load, and can furthermore be extended to interleaved operating converters to study the interaction effect of switching operations. From this analysis, advanced control algorithms are also developed to guarantee the satisfactory performance of the converter, avoiding nonlinear behaviours such as fast- and slowscale bifurcations. The numerical and analytical results validate the theoretical analysis, and experimental results with an interleaved boost converter verify the effectiveness of the proposed approach.Engineering and Physical Sciences Research Council (EPSRC), China Scholarship Council (CSC), and school of Electrical and Electronic Engineerin

    High-efficiency voltage source converters with silicon super-junction MOSFETs

    Get PDF
    High-efficiency power converters have the benefits of minimising energy consumption, reducing costs, and realising high power densities. The silicon super-junction (SJ) MOSFET is an attractive device for high-efficiency applications. However, its highly non-linear output capacitance and the reverse recovery properties of its intrinsic diode must be addressed when used in voltage source converters (VSCs). The research in this thesis aims at addressing these two problems and realising high efficiency. Initially, state-of-art techniques in the literature are reviewed. In order to develop a solution with simple hardware, no major auxiliary magnetic components, and no onerous timing requirements, a dual-mode switching technique is proposed. The technique is demonstrated using a SJ MOSFET based bridge-leg circuit. The hardware performance is then experimentally investigated with different power semiconductor device permutations. The transition conditions between the two switching modes do not have to be tightly set in order to maintain a high efficiency. The dual-mode switching technique is then further investigated with a current transformer (CT) arrangement embedded in the MOSFET’s gate driver circuit in order to control the profile of the MOSFET’s incoming drain current at turn on. The dual-mode switching technique, with or without a CT scheme, is shown to achieve high efficiency with minimal additional hardware.High-efficiency power converters have the benefits of minimising energy consumption, reducing costs, and realising high power densities. The silicon super-junction (SJ) MOSFET is an attractive device for high-efficiency applications. However, its highly non-linear output capacitance and the reverse recovery properties of its intrinsic diode must be addressed when used in voltage source converters (VSCs). The research in this thesis aims at addressing these two problems and realising high efficiency. Initially, state-of-art techniques in the literature are reviewed. In order to develop a solution with simple hardware, no major auxiliary magnetic components, and no onerous timing requirements, a dual-mode switching technique is proposed. The technique is demonstrated using a SJ MOSFET based bridge-leg circuit. The hardware performance is then experimentally investigated with different power semiconductor device permutations. The transition conditions between the two switching modes do not have to be tightly set in order to maintain a high efficiency. The dual-mode switching technique is then further investigated with a current transformer (CT) arrangement embedded in the MOSFET’s gate driver circuit in order to control the profile of the MOSFET’s incoming drain current at turn on. The dual-mode switching technique, with or without a CT scheme, is shown to achieve high efficiency with minimal additional hardware

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    Interference Suppression in Massive MIMO VLC Systems

    Get PDF
    The focus of this dissertation is on the development and evaluation of methods and principles to mitigate interference in multiuser visible light communication (VLC) systems using several transmitters. All components of such a massive multiple-input multiple-output (MIMO) system are considered and transformed into a communication system model, while also paying particular attention to the hardware requirements of different modulation schemes. By analyzing all steps in the communication process, the inter-channel interference between users is identified as the most critical aspect. Several methods of suppressing this kind of interference, i.e. to split the MIMO channel into parallel single channels, are discussed, and a novel active LCD-based interference suppression principle at the receiver side is introduced as main aspect of this work. This technique enables a dynamic adaption of the physical channel: compared to solely software-based or static approaches, the LCD interference suppression filter achieves adaptive channel separation without altering the characteristics of the transmitter lights. This is especially advantageous in dual-use scenarios with illumination requirements. Additionally, external interferers, like natural light or transmitter light sources of neighboring cells in a multicell setting, can also be suppressed without requiring any control over them. Each user's LCD filter is placed in front of the corresponding photodetector and configured in such a way that only light from desired transmitters can reach the detector by setting only the appropriate pixels to transparent, while light from unwanted transmitters remains blocked. The effectiveness of this method is tested and benchmarked against zero-forcing (ZF) precoding in different scenarios and applications by numerical simulations and also verified experimentally in a large MIMO VLC testbed created specifically for this purpose

    Applications of Power Electronics:Volume 2

    Get PDF

    Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems

    Get PDF
    Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications

    Modeling, Analysis and Control of DC Hybrid Power Systems.

    Full text link
    All electric ships are featured with integrated power systems which combine electric propulsion technology with heterogeneous power generation and distribution technologies to form one single electrical platform. The auxiliary and main power generation system form an isolated hybrid power system to feed the ship service loads and to meet the propulsion power requirement. Although for decades, the methodologies for power converter control have been explored in many publications, the modeling, analysis, and control of hybrid power systems with multiple power converters remains an interesting open problem, leading to its exclusive focus in this dissertation. Along with the opportunities introduced by hybrid power systems, the inter-connectivity and complexity represent a major system analysis, design and optimization challenge, calling for the development of effective tools. Therefore, a comprehensive testbed is developed. Moreover, component level modeling, analysis and modulation strategy development are performed to ensure system level performance. A new power flow model for the dual active bridge converter is derived. The new model provides a physical interpretation of the observed phenomena and identifies other characteristics that are validated by experiments. To overcome the drawbacks of traditional modulation strategies, a novel modulation strategy is developed for the dual active bridge converter. The experimental results verified that, if the new strategy is used to modulate the dual active bridge converter, this testbed can be used as an effective tool for optimal power management algorithm development for the hybrid power systems. The development of advanced control algorithms, together with the increased computational power of microprocessors, enables us to deal with the control problem from a new perspective. In this dissertation, the voltage regulation problem for a full bridge DC/DC converter is formulated as both a linear and a nonlinear Model Predictive Control (MPC) problem with a nonlinear constraint that captures the peak current protection requirement. The experimental results reveal that both the MPC algorithms can successfully achieve voltage regulation and peak current protection. The successful implementation of the MPC schemes on the full bridge DC/DC converter paves the way for future system-level advanced control algorithm development for hybrid power systems.Ph.D.Naval Architecture & Marine EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/75813/1/yhxie_1.pd
    corecore