2,518 research outputs found

    MULTISLICE THOMOGRAPHY EVALUATION IN CORONARY ARTERY DISEASE

    Get PDF
    Conventional Coronary Angiography (CCA) is the diagnostic standard for identification and evaluation of coronary stenosis and coronary artery bypass graft (CABG) patency. Limits of this technique (invasivity, undeniable costs, risk of mortality and morbidity) and the large, worldwide, procedure number, whose only one third followed by interventional procedures, because of high percentage of uninjured coronary arteries, suggest the usefulness of a new non-invasive way to visualize the coronaric tree in patients with actual indication to CCA and Percutaneous Coronary Interventions (PCI).Multi-slice computed tomography (MSCT) is a rapidly developing technique and allows reliable evaluation of the coronary arteries and CABG in a non-invasive manner. Despite limitations due to calcium, movement, metallic parts and high radiation dose, MSCT – CA showed a good diagnostic capability in detecting significant coronary artery stenosis in patient with suspected or known significant coronary artery disease

    CT Scanning

    Get PDF
    Since its introduction in 1972, X-ray computed tomography (CT) has evolved into an essential diagnostic imaging tool for a continually increasing variety of clinical applications. The goal of this book was not simply to summarize currently available CT imaging techniques but also to provide clinical perspectives, advances in hybrid technologies, new applications other than medicine and an outlook on future developments. Major experts in this growing field contributed to this book, which is geared to radiologists, orthopedic surgeons, engineers, and clinical and basic researchers. We believe that CT scanning is an effective and essential tools in treatment planning, basic understanding of physiology, and and tackling the ever-increasing challenge of diagnosis in our society

    Diseases of the Chest, Breast, Heart and Vessels 2019-2022

    Get PDF
    This open access book focuses on diagnostic and interventional imaging of the chest, breast, heart, and vessels. It consists of a remarkable collection of contributions authored by internationally respected experts, featuring the most recent diagnostic developments and technological advances with a highly didactical approach. The chapters are disease-oriented and cover all the relevant imaging modalities, including standard radiography, CT, nuclear medicine with PET, ultrasound and magnetic resonance imaging, as well as imaging-guided interventions. As such, it presents a comprehensive review of current knowledge on imaging of the heart and chest, as well as thoracic interventions and a selection of "hot topics". The book is intended for radiologists, however, it is also of interest to clinicians in oncology, cardiology, and pulmonology

    Diseases of the Chest, Breast, Heart and Vessels 2019-2022

    Get PDF
    This open access book focuses on diagnostic and interventional imaging of the chest, breast, heart, and vessels. It consists of a remarkable collection of contributions authored by internationally respected experts, featuring the most recent diagnostic developments and technological advances with a highly didactical approach. The chapters are disease-oriented and cover all the relevant imaging modalities, including standard radiography, CT, nuclear medicine with PET, ultrasound and magnetic resonance imaging, as well as imaging-guided interventions. As such, it presents a comprehensive review of current knowledge on imaging of the heart and chest, as well as thoracic interventions and a selection of "hot topics". The book is intended for radiologists, however, it is also of interest to clinicians in oncology, cardiology, and pulmonology

    Pulmonary infarction in acute pulmonary embolism

    Get PDF
    Pulmonary infarction results from occlusion of the distal pulmonary arteries leading to ischemia, hemorrhage and ultimately necrosis of the lung parenchyma. It is most commonly caused by acute pulmonary embolism (PE), with a reported incidence of around 30%. Following an occlusion of the pulmonary artery, the bronchial arteries are recruited as primary source of perfusion of the pulmonary capillaries. The relatively higher blood pressure in the bronchial circulation causes an increase in the capillary blood flow, leading to extravasation of erythrocytes (i.e. alveolar hemorrhage). If this hemorrhage cannot be resorbed, it results in tissue necrosis and infarction. Different definitions of pulmonary infarction are used in literature (clinical, radiological and histological), although the diagnosis is nowadays mostly based on radiological characteristics. Notably, the infarcted area is only replaced by a fibrotic scar over a period of months. Hence and formally, the diagnosis of pulmonary infarction cannot be confirmed upon diagnosis of acute PE. Little is known of the impact and relevance of pulmonary infarction in acute PE, and whether specific management strategies should be applied to prevent and/ or treat complications such as pain, pneumonia or post-PE syndrome. In this review we will summarize current knowledge on the pathophysiology, epidemiology, diagnosis and prognosis of pulmonary infarction in the setting of acute PE. We highlight the need for dedicated studies to overcome the current knowledge gaps.Cardiovascular Aspects of Radiolog

    Imaging in pulmonary hypertension: the role of MR and CT

    Get PDF
    Pulmonary hypertension (PH) is a debilitating disease with many causes that has a significant impact on quality of life and results in premature death. Until recently imaging has only played an adjunctive role to primary diagnostic modalities such as echocardiography and right heart catheterization in identifying these patients. The advent of newer imaging techniques and developments in hardware has opened up a new scope for imaging. CT offers excellent structural detail while MRI provides superb functional information without the risk of radiation. These modalities now offer a robust and in-depth diagnostic approach for the investigation of patients with suspected pulmonary hypertension. This document explores the role of MR and CT imaging methods in investigating patients with pulmonary vascular disease and different aspect of lung disease. In particular, subgroups of pulmonary hypertension associated with unique morphological changes have been closely scrutinized. In this work the value of MR angiography in patients suspected with chronic thromboembolic pulmonary hypertension or unexplained PH has been explored and in the same subgroup of patients, the role of 3D MR lung perfusion as a diagnostic tool has also been demonstrated. This research has also shown that the thoracic CT offers valuable prognostic information and imaging characteristics in patients with each of the major subcategories of pulmonary arterial hypertension. Furthermore, the diagnostic accuracy and prognostic significance of MR and CT indices for the detection of PH in patients with connective tissue disease associated with PH has been highlighted. Finally, the feasibility and diagnostic quality of MRI to identify structural parenchymal lung changes have also been analysed and this study demonstrates the potential clinical utility of imaging high risk patients with MRI in longitudinal studies thereby avoiding the hazards of radiation exposure

    Tailoring protocols for chest CT applications: when and how?

    Get PDF
    In the medical era of early detection of diseases and tailored therapies, an accurate characterization and staging of the disease is pivotal for treatment planning. The widespread use of computed tomography (CT)—often with the use of contrast material (CM)—probably represents the most important advance in diagnostic radiology. The result is a marked increase in radiation exposure of the population for medical purposes, with its intrinsic carcinogenic potential, and CM affecting kidney function. The radiologists should aim to minimize patient’s risk by reducing radiation exposure and CM amount, while maintaining the highest image quality. To achieve this goal, it is necessary to perform “patient-centric imaging”. The purpose of this review is to provide radiologists with “tips and tricks” to control radiation dose at CT, summarizing technical artifices in order to reduce image noise and increase image contrast. Also chest CT tailored protocols are supplied, with particular attention to three most common thoracic CT protocols: aortic/cardiac CT angiography (CTA), pulmonary CTA, and routine chest CT

    Application of postmortem imaging modalities in cases of sudden death due to cardiovascular diseases-current achievements and limitations from a pathology perspective : Endorsed by the Association for European Cardiovascular Pathology and by the International Society of Forensic Radiology and Imaging.

    Get PDF
    Postmortem imaging (PMI) is increasingly used in postmortem practice and is considered a potential alternative to a conventional autopsy, particularly in case of sudden cardiac deaths (SCD). In 2017, the Association for European Cardiovascular Pathology (AECVP) published guidelines on how to perform an autopsy in such cases, which is still considered the gold standard, but the diagnostic value of PMI herein was not analyzed in detail. At present, significant progress has been made in the PMI diagnosis of acute ischemic heart disease, the most important cause of SCD, while the introduction of postmortem CT angiography (PMCTA) has improved the visualization of several parameters of coronary artery pathology that can support a diagnosis of SCD. Postmortem magnetic resonance (PMMR) allows the detection of acute myocardial injury-related edema. However, PMI has limitations when compared to clinical imaging, which severely impacts the postmortem diagnosis of myocardial injuries (ischemic versus non-ischemic), the age-dating of coronary occlusion (acute versus old), other potentially SCD-related cardiac lesions (e.g., the distinctive morphologies of cardiomyopathies), aortic diseases underlying dissection or rupture, or pulmonary embolism. In these instances, PMI cannot replace a histopathological examination for a final diagnosis. Emerging minimally invasive techniques at PMI such as image-guided biopsies of the myocardium or the aorta, provide promising results that warrant further investigations. The rapid developments in the field of postmortem imaging imply that the diagnosis of sudden death due to cardiovascular diseases will soon require detailed knowledge of both postmortem radiology and of pathology
    corecore