131 research outputs found

    Event-triggered Consensus for Multi-agent Systems with Asymmetric and Reducible Topologies

    Full text link
    This paper studies the consensus problem of multi-agent systems with asymmetric and reducible topologies. Centralized event-triggered rules are provided so as to reduce the frequency of system's updating. The diffusion coupling feedbacks of each agent are based on the latest observations from its in-neighbors and the system's next observation time is triggered by a criterion based on all agents' information. The scenario of continuous monitoring is first considered, namely all agents' instantaneous states can be observed. It is proved that if the network topology has a spanning tree, then the centralized event-triggered coupling strategy can realize consensus for the multi-agent system. Then the results are extended to discontinuous monitoring, where the system computes its next triggering time in advance without having to observe all agents' states continuously. Examples with numerical simulation are provided to show the effectiveness of the theoretical results

    Fast-Convergent Dynamics for Distributed Resource Allocation Over Sparse Time-Varying Networks

    Full text link
    In this paper, distributed dynamics are deployed to solve resource allocation over time-varying multi-agent networks. The state of each agent represents the amount of resources used/produced at that agent while the total amount of resources is fixed. The idea is to optimally allocate the resources among the group of agents by reducing the total cost functions subject to fixed amount of total resources. The information of each agent is restricted to its own state and cost function and those of its immediate neighbors. This is motivated by distributed applications such as in mobile edge-computing, economic dispatch over smart grids, and multi-agent coverage control. The non-Lipschitz dynamics proposed in this work shows fast convergence as compared to the linear and some nonlinear solutions in the literature. Further, the multi-agent network connectivity is more relaxed in this paper. To be more specific, the proposed dynamics even reaches optimal solution over time-varying disconnected undirected networks as far as the union of these networks over some bounded non-overlapping time-intervals includes a spanning-tree. The proposed convergence analysis can be applied for similar 1st-order resource allocation nonlinear dynamics. We provide simulations to verify our results

    Distributed Optimization for Second-Order Multi-Agent Systems with Dynamic Event-Triggered Communication

    Full text link
    In this paper, we propose a fully distributed algorithm for second-order continuous-time multi-agent systems to solve the distributed optimization problem. The global objective function is a sum of private cost functions associated with the individual agents and the interaction between agents is described by a weighted undirected graph. We show the exponential convergence of the proposed algorithm if the underlying graph is connected, each private cost function is locally gradient-Lipschitz-continuous, and the global objective function is restricted strongly convex with respect to the global minimizer. Moreover, to reduce the overall need of communication, we then propose a dynamic event-triggered communication mechanism that is free of Zeno behavior. It is shown that the exponential convergence is achieved if the private cost functions are also globally gradient-Lipschitz-continuous. Numerical simulations are provided to illustrate the effectiveness of the theoretical results

    Solving specified-time distributed optimization problem via sampled-data-based algorithm

    Full text link
    Despite significant advances on distributed continuous-time optimization of multi-agent networks, there is still lack of an efficient algorithm to achieve the goal of distributed optimization at a pre-specified time. Herein, we design a specified-time distributed optimization algorithm for connected agents with directed topologies to collectively minimize the sum of individual objective functions subject to an equality constraint. With the designed algorithm, the settling time of distributed optimization can be exactly predefined. The specified selection of such a settling time is independent of not only the initial conditions of agents, but also the algorithm parameters and the communication topologies. Furthermore, the proposed algorithm can realize specified-time optimization by exchanging information among neighbours only at discrete sampling instants and thus reduces the communication burden. In addition, the equality constraint is always satisfied during the whole process, which makes the proposed algorithm applicable to online solving distributed optimization problems such as economic dispatch. For the special case of undirected communication topologies, a reduced-order algorithm is also designed. Finally, the effectiveness of the theoretical analysis is justified by numerical simulations
    • …
    corecore