30,284 research outputs found

    Differential Privacy in Metric Spaces: Numerical, Categorical and Functional Data Under the One Roof

    Get PDF
    We study Differential Privacy in the abstract setting of Probability on metric spaces. Numerical, categorical and functional data can be handled in a uniform manner in this setting. We demonstrate how mechanisms based on data sanitisation and those that rely on adding noise to query responses fit within this framework. We prove that once the sanitisation is differentially private, then so is the query response for any query. We show how to construct sanitisations for high-dimensional databases using simple 1-dimensional mechanisms. We also provide lower bounds on the expected error for differentially private sanitisations in the general metric space setting. Finally, we consider the question of sufficient sets for differential privacy and show that for relaxed differential privacy, any algebra generating the Borel σ\sigma-algebra is a sufficient set for relaxed differential privacy.Comment: 18 Page

    MVG Mechanism: Differential Privacy under Matrix-Valued Query

    Full text link
    Differential privacy mechanism design has traditionally been tailored for a scalar-valued query function. Although many mechanisms such as the Laplace and Gaussian mechanisms can be extended to a matrix-valued query function by adding i.i.d. noise to each element of the matrix, this method is often suboptimal as it forfeits an opportunity to exploit the structural characteristics typically associated with matrix analysis. To address this challenge, we propose a novel differential privacy mechanism called the Matrix-Variate Gaussian (MVG) mechanism, which adds a matrix-valued noise drawn from a matrix-variate Gaussian distribution, and we rigorously prove that the MVG mechanism preserves (ϵ,δ)(\epsilon,\delta)-differential privacy. Furthermore, we introduce the concept of directional noise made possible by the design of the MVG mechanism. Directional noise allows the impact of the noise on the utility of the matrix-valued query function to be moderated. Finally, we experimentally demonstrate the performance of our mechanism using three matrix-valued queries on three privacy-sensitive datasets. We find that the MVG mechanism notably outperforms four previous state-of-the-art approaches, and provides comparable utility to the non-private baseline.Comment: Appeared in CCS'1

    k-anonymous Microdata Release via Post Randomisation Method

    Full text link
    The problem of the release of anonymized microdata is an important topic in the fields of statistical disclosure control (SDC) and privacy preserving data publishing (PPDP), and yet it remains sufficiently unsolved. In these research fields, k-anonymity has been widely studied as an anonymity notion for mainly deterministic anonymization algorithms, and some probabilistic relaxations have been developed. However, they are not sufficient due to their limitations, i.e., being weaker than the original k-anonymity or requiring strong parametric assumptions. First we propose Pk-anonymity, a new probabilistic k-anonymity, and prove that Pk-anonymity is a mathematical extension of k-anonymity rather than a relaxation. Furthermore, Pk-anonymity requires no parametric assumptions. This property has a significant meaning in the viewpoint that it enables us to compare privacy levels of probabilistic microdata release algorithms with deterministic ones. Second, we apply Pk-anonymity to the post randomization method (PRAM), which is an SDC algorithm based on randomization. PRAM is proven to satisfy Pk-anonymity in a controlled way, i.e, one can control PRAM's parameter so that Pk-anonymity is satisfied. On the other hand, PRAM is also known to satisfy ε{\varepsilon}-differential privacy, a recent popular and strong privacy notion. This fact means that our results significantly enhance PRAM since it implies the satisfaction of both important notions: k-anonymity and ε{\varepsilon}-differential privacy.Comment: 22 pages, 4 figure

    Crowd-ML: A Privacy-Preserving Learning Framework for a Crowd of Smart Devices

    Full text link
    Smart devices with built-in sensors, computational capabilities, and network connectivity have become increasingly pervasive. The crowds of smart devices offer opportunities to collectively sense and perform computing tasks in an unprecedented scale. This paper presents Crowd-ML, a privacy-preserving machine learning framework for a crowd of smart devices, which can solve a wide range of learning problems for crowdsensing data with differential privacy guarantees. Crowd-ML endows a crowdsensing system with an ability to learn classifiers or predictors online from crowdsensing data privately with minimal computational overheads on devices and servers, suitable for a practical and large-scale employment of the framework. We analyze the performance and the scalability of Crowd-ML, and implement the system with off-the-shelf smartphones as a proof of concept. We demonstrate the advantages of Crowd-ML with real and simulated experiments under various conditions
    • …
    corecore