367 research outputs found

    SoK:Delay-based Cryptography

    Get PDF

    SoK: Privacy-Enhancing Technologies in Finance

    Get PDF
    Recent years have seen the emergence of practical advanced cryptographic tools that not only protect data privacy and authenticity, but also allow for jointly processing data from different institutions without sacrificing privacy. The ability to do so has enabled implementations a number of traditional and decentralized financial applications that would have required sacrificing privacy or trusting a third party. The main catalyst of this revolution was the advent of decentralized cryptocurrencies that use public ledgers to register financial transactions, which must be verifiable by any third party, while keeping sensitive data private. Zero Knowledge (ZK) proofs rose to prominence as a solution to this challenge, allowing for the owner of sensitive data (e.g. the identities of users involved in an operation) to convince a third party verifier that a certain operation has been correctly executed without revealing said data. It quickly became clear that performing arbitrary computation on private data from multiple sources by means of secure Multiparty Computation (MPC) and related techniques allows for more powerful financial applications, also in traditional finance. In this SoK, we categorize the main traditional and decentralized financial applications that can benefit from state-of-the-art Privacy-Enhancing Technologies (PETs) and identify design patterns commonly used when applying PETs in the context of these applications. In particular, we consider the following classes of applications: 1. Identity Management, KYC & AML; and 2. Markets & Settlement; 3. Legal; and 4. Digital Asset Custody. We examine how ZK proofs, MPC and related PETs have been used to tackle the main security challenges in each of these applications. Moreover, we provide an assessment of the technological readiness of each PET in the context of different financial applications according to the availability of: theoretical feasibility results, preliminary benchmarks (in scientific papers) or benchmarks achieving real-world performance (in commercially deployed solutions). Finally, we propose future applications of PETs as Fintech solutions to currently unsolved issues. While we systematize financial applications of PETs at large, we focus mainly on those applications that require privacy preserving computation on data from multiple parties

    SoK: Delay-based Cryptography

    Get PDF
    In this work, we provide a systematisation of knowledge of delay-based cryptography, in which we discuss and compare the existing primitives within cryptography that utilise a time-delay. We start by considering the role of time within cryptography, explaining broadly what a delay aimed to achieve at its inception and now, in the modern age. We then move on to describing the underlying assumptions used to achieve these goals, and analyse topics including trust, decentralisation and concrete methods to implement a delay. We then survey the existing primitives, discussing their security properties, instantiations and applications. We make explicit the relationships between these primitives, identifying a hierarchy and the theoretical gaps that exist. We end this systematisation of knowledge by highlighting relevant future research directions within the field of delay-based cryptography, from which this area would greatly benefit

    SEAL: Sealed-Bid Auction without Auctioneers

    Get PDF
    We propose the first auctioneer-free sealed-bid auction protocol with a linear computation and communication complexity O(c), c being the bit length of the bid price. Our protocol, called Self-Enforcing Auction Lot (SEAL), operates in a decentralized setting, where bidders jointly compute the maximum bid while preserving the privacy of losing bids. In our protocol, we do not require any secret channels between participants. All operations are publicly verifiable; everyone including third-party observers is able to verify the integrity of the auction outcome. Upon learning the highest bid, the winner comes forward with a proof to prove that she is the real winner. Based on the proof, everyone is able to check if there is only one winner or there is a tie. While our main protocol works with the first-price sealed-bid, it can be easily extended to support the second-price sealed-bid (also known as the Vickrey auction), revealing only the winner and the second highest bid, while keeping the highest bid and all other bids secret. To the best of our knowledge, this work establishes to date the best computation and communication complexity for sealed-bid auction schemes without involving any auctioneer
    • …
    corecore