761 research outputs found

    Yet More Modal Logics of Preference Change and Belief Revision

    Get PDF
    We contrast Bonanno's `Belief Revision in a Temporal Framework' \cite{Bonanno07:briatfTV} with preference change and belief revision from the perspective of dynamic epistemic logic (DEL). For that, we extend the logic of communic

    Approches légères pour le raisonnement sur les connaissances et les croyances

    Get PDF
    Dans cette thèse nous étudions un cadre simple dans lequel modéliser les croyances et les connaissances ainsi que leur évolution dans des systèmes multi-agents. La logique standard de représentation des connaissances est très expressive, mais au prix d'une haute complexité calculatoire. Nous proposons ici un cadre qui permet de capturer plus de situations que d'autres approches existantes tout en restant efficace. En particulier, nous considérons l'application de notre logique à la planification épistémique : étant données une situation initiale et des actions possibles, peut-on atteindre un but fixé ? Cela peut signifier savoir à qui poser des questions pour apprendre des informations, faire en sorte de ne pas être remarquée lorsque l'on lit le courrier de quelqu'un d'autre, ou empêcher quelqu'un d'entendre nos secrets. Nous considérons aussi de possibles extensions à des logiques de croyance, ainsi que les liens entre notre système et d'autres cadres proches.In this thesis we study a lightweight framework in which to model knowledge and beliefs and the evolution thereof in multiagent systems. The standard logic used for this is very expressive, but this comes at a high cost in terms of computational efficiency. We here propose a framework which captures more than other existing approaches while remaining cost-effective. In particular, we show its applicability to epistemic planning: given an initial situation and some possible actions, can we find a way to reach our desired goal? This might mean knowing who to ask in order to learn something, making sure we aren't seen when reading someone else's mail, or preventing someone from overhearing our secrets. We also discuss possible extensions to logics of belief, and the relations between our framework and other related approaches

    Hidden protocols: Modifying our expectations in an evolving world

    Get PDF
    When agents know a protocol, this leads them to have expectations about future observations. Agents can update their knowledge by matching their actual observations with the expected ones. They eliminate states where they do not match. In this paper, we study how agents perceive protocols that are not commonly known, and propose a semantics-driven logical framework to reason about knowledge in such scenarios. In particular, we introduce the notion of epistemic expectation models and a propositional dynamic logic-style epistemic logic for reasoning about knowledge via matching agentsÊ expectations to their observations. It is shown how epistemic expectation models can be obtained from epistemic protocols. Furthermore, a characterization is presented of the effective equivalence of epistemic protocols. We introduce a new logic that incorporates updates of protocols and that can model reasoning about knowledge and observations. Finally, the framework is extended to incorporate fact-changing actions, and a worked-out example is given. © 2013 Elsevier B.V

    Optimal methods for reasoning about actions and plans in multi-agent systems

    Get PDF
    Cet travail présente une solution au problème du décor inférenciel. Nous réalisons cela en donnant une éducation polynomiale d'un fragment du calcul des situations vers la logique épistémique dynamique (DEL). En suite, une nouvelle méthode de preuve pour DEL, dont la complexité algorithmique est inférieure à celle de la méthode de Reiter pour le calcul de situations, est proposée. Ce travail présente aussi une nouvelle logique pour raisonner sur les actions. Cette logique permet d'exprimer formellement "qu'il existe une suite d'action conduisant au but". L'idée étant que, avec la quantification sur les actions, la planification devient un problème de validité. Une axiomatisation et quelques résultats d'expressivité sont donnés, ainsi qu'une méthode de preuve basée sur les tableaux sémantiques.This work presents a solution to the inferential frame problem. We do so by providing a polynomial reduction from a fragment of situation calculus to espistemic dynamic logic (DEL). Then, a novel proof method for DEL, such that the computational complexity is much lower than that of Retier's proof method for situation caluculs, is proposed. This work also presents a new logic for reasoning about actions. This logic allows to formally express that "there exists a sequence of actions that leads to the goal". The idea is that, with quantification over actions, planning can become a validity problem. An axiomatisation and some expressivity results are provided, as well as a proof method based on sematic tableaux

    New Directions in Model Checking Dynamic Epistemic Logic

    Get PDF
    Dynamic Epistemic Logic (DEL) can model complex information scenarios in a way that appeals to logicians. However, its existing implementations are based on explicit model checking which can only deal with small models, so we do not know how DEL performs for larger and real-world problems. For temporal logics, in contrast, symbolic model checking has been developed and successfully applied, for example in protocol and hardware verification. Symbolic model checkers for temporal logics are very efficient and can deal with very large models. In this thesis we build a bridge: new faithful representations of DEL models as so-called knowledge and belief structures that allow for symbolic model checking. For complex epistemic and factual change we introduce transformers, a symbolic replacement for action models. Besides a detailed explanation of the theory, we present SMCDEL: a Haskell implementation of symbolic model checking for DEL using Binary Decision Diagrams. Our new methods can solve well-known benchmark problems in epistemic scenarios much faster than existing methods for DEL. We also compare its performance to to existing model checkers for temporal logics and show that DEL can compete with established frameworks. We zoom in on two specific variants of DEL for concrete applications. First, we introduce Public Inspection Logic, a new framework for the knowledge of variables and its dynamics. Second, we study the dynamic gossip problem and how it can be analyzed with epistemic logic. We show that existing gossip protocols can be improved, but that no perfect strengthening of "Learn New Secrets" exists

    Logical models for bounded reasoners

    Get PDF
    This dissertation aims at the logical modelling of aspects of human reasoning, informed by facts on the bounds of human cognition. We break down this challenge into three parts. In Part I, we discuss the place of logical systems for knowledge and belief in the Rationality Debate and we argue for systems that formalize an alternative picture of rationality -- one wherein empirical facts have a key role (Chapter 2). In Part II, we design logical models that encode explicitly the deductive reasoning of a single bounded agent and the variety of processes underlying it. This is achieved through the introduction of a dynamic, resource-sensitive, impossible-worlds semantics (Chapter 3). We then show that this type of semantics can be combined with plausibility models (Chapter 4) and that it can be instrumental in modelling the logical aspects of System 1 (“fast”) and System 2 (“slow”) cognitive processes (Chapter 5). In Part III, we move from single- to multi-agent frameworks. This unfolds in three directions: (a) the formation of beliefs about others (e.g. due to observation, memory, and communication), (b) the manipulation of beliefs (e.g. via acts of reasoning about oneself and others), and (c) the effect of the above on group reasoning. These questions are addressed, respectively, in Chapters 6, 7, and 8. We finally discuss directions for future work and we reflect on the contribution of the thesis as a whole (Chapter 9)

    Proceedings of the International Workshop on Reactive Concepts in Knowledge Representation 2014

    Get PDF
    These are the proceedings of the International Workshop on Reactive Concepts in Knowledge Representation (ReactKnow 2014), which took place on August 19th, 2014 in Prague, co-located with the 21st European Conference on Artificial Intelligence (ECAI 2014)

    Efficient Multi-agent Epistemic Planning: Teaching Planners About Nested Belief

    Get PDF
    Many AI applications involve the interaction of multiple autonomous agents, requiring those agents to reason about their own beliefs, as well as those of other agents. However, planning involving nested beliefs is known to be computationally challenging. In this work, we address the task of synthesizing plans that necessitate reasoning about the beliefs of other agents. We plan from the perspective of a single agent with the potential for goals and actions that involve nested beliefs, non-homogeneous agents, co-present observations, and the ability for one agent to reason as if it were another. We formally characterize our notion of planning with nested belief, and subsequently demonstrate how to automatically convert such problems into problems that appeal to classical planning technology for solving efficiently. Our approach represents an important step towards applying the well-established field of automated planning to the challenging task of planning involving nested beliefs of multiple agents

    Logic and Interactive RAtionality. Yearbook 2009

    Get PDF
    corecore