56 research outputs found

    Adaptively Secure Computationally Efficient Searchable Symmetric Encryption

    Get PDF
    Searchable encryption is a technique that allows a client to store documents on a server in encrypted form. Stored documents can be retrieved selectively while revealing as little information as\ud possible to the server. In the symmetric searchable encryption domain, the storage and the retrieval are performed by the same client. Most conventional searchable encryption schemes suffer\ud from two disadvantages.\ud First, searching the stored documents takes time linear in the size of the database, and/or uses heavy arithmetic operations.\ud Secondly, the existing schemes do not consider adaptive attackers;\ud a search-query will reveal information even about documents stored\ud in the future. If they do consider this, it is at a significant\ud cost to updates.\ud In this paper we propose a novel symmetric searchable encryption\ud scheme that offers searching at constant time in the number of\ud unique keywords stored on the server. We present two variants of\ud the basic scheme which differ in the efficiency of search and\ud update. We show how each scheme could be used in a personal health\ud record system

    Secure data storage and retrieval in cloud computing

    Get PDF
    Nowadays cloud computing has been widely recognised as one of the most inuential information technologies because of its unprecedented advantages. In spite of its widely recognised social and economic benefits, in cloud computing customers lose the direct control of their data and completely rely on the cloud to manage their data and computation, which raises significant security and privacy concerns and is one of the major barriers to the adoption of public cloud by many organisations and individuals. Therefore, it is desirable to apply practical security approaches to address the security risks for the wide adoption of cloud computing

    Efficient privacy preserving predicate encryption with fine-grained searchable capability for cloud storage

    Get PDF
    With the fast development in Cloud storage technologies and ever increasing use of Cloud data centres, data privacy and confidentiality has become a must. Indeed, Cloud data centres store each time more sensitive data such as personal data, organizational and enterprise data, transactional data, etc. However, achieving confidentiality with flexible searchable capability is a challenging issue. In this article, we show how to construct an efficient predicate encryption with fine-grained searchable capability. Predicate Encryption (PEPE) can achieve more sophisticated and flexible functionality compared with traditional public key encryption. We propose an efficient predicate encryption scheme by utilizing the dual system encryption technique, which can also be proved to be IND-AH-CPA (indistinguishable under chosen plain-text attack for attribute-hiding) secure without random oracle. We also carefully analyse the relationship between predicate encryption and searchable encryption. To that end, we introduce a new notion of Public-Key Encryption with Fine-grained Keyword Search (PEFKSPEFKS). Our results show that an IND-AH-CPA secure PE scheme can be used to construct an IND-PEFKS-CPA (indistinguishable under chosen plain-text attack for public-key encryption with fine-grained keyword search) secure PEFKSPEFKS scheme. A new transformation of PE-to-PEFKS is also proposed and used to construct an efficient PEFKSPEFKS scheme based on the transformation from the proposed PEPE scheme. Finally, we design a new framework for supporting privacy preserving predicate encryption with fine-grained searchable capability for Cloud storage. Compared to most prominent frameworks, our framework satisfies more features altogether and can serve as a basis for developing such frameworks for Cloud data centres.Peer ReviewedPostprint (author's final draft

    Key-updatable public-key encryption with keyword search (Or: How to realize PEKS with efficient key updates for IoT environments)

    Get PDF
    Security and privacy are the key issues for the Internet of Things (IoT) systems. Especially, secure search is an important functionality for cooperation among users\u27 devices and non-trusted servers. Public-key encryption with keyword search (PEKS) enables us to search encrypted data and is expected to be used between a cloud server and users\u27 mobile devices or IoT devices. However, those mobile devices might be lost or stolen. For IoT devices, it might be difficult to store keys in a tamper-proof manner due to prohibitive costs. In this paper, we deal with such a key-exposure problem on PEKS and introduce the concept of PEKS with key-updating functionality, which we call key-updatable PEKS (KU-PEKS). Specifically, we propose two models of KU-PEKS: the key-evolution model and the key-insulation model. In the key-evolution model, a pair of public and secret keys can be updated if needed (e.g., the secret key is exposed). In the key-insulation model, the public key remains fixed while the secret key can be updated if needed. The former model makes a construction simple and more efficient than the latter. On the other hand, the latter model is preferable for practical use since a user never updates their public key. We show constructions in each model in a black-box manner. We also give implementation results on Raspberry Pi 3, which can be regarded as a reasonable platform of IoT devices

    Generic Construction of Forward Secure Public Key Authenticated Encryption with Keyword Search

    Get PDF
    Forward security is a fundamental requirement in searchable encryption, where a newly generated ciphertext is not allowed to be searched by previously generated trapdoors. However, forward security is somewhat overlooked in the public key encryption with keyword search (PEKS) context and there are few proposals, whereas forward security has been stated as a default security notion in the (dynamic) symmetric searchable encryption (SSE) context. In the PEKS context, forward secure PEKS (FS-PEKS) is essentially the same as public key encryption with temporary keyword search (PETKS) proposed by Abdalla et al. (JoC 2016) which can be constructed generically from hierarchical identity-based encryption (HIBE) with level-1 anonymity. Alternatively, Zeng et al. (IEEE Transactions on Cloud Computing 2022) also proposed a generic construction of FS-PEKS from attribute-based searchable encryption supporting OR gates. In the public key authenticated encryption with keyword search (PAEKS) context, a concrete forward secure PAEKS (FS-PAEKS) construction has been proposed by Jiang et al. (The Computer Journal 2022). As an independent work, thought Xu et al. proposed a generic construction of FS-PAEKS (ePrint 2023), they employed the Liu et al. generic construction of PAEKS (AsiaCCS 2022) that requires random oracles. Thus, a generic construction of FS-PAEKS without random oracles has not been proposed so far. In this paper, we propose a generic construction of FS-PAEKS from PAEKS. In addition to PAEKS, we employ 0/1 encodings proposed by Lin et al. (ACNS 2005). We also show that the Jiang et al. FS-PAEKS scheme does not provide forward security, and thus our generic construction yields the first secure FS-PAEKS schemes. Our generic construction is quite simple, and it can also be applied to construct FS-PEKS. Our generic construction yields a comparably efficient FS-PEKS scheme compared to the previous scheme. Moreover, it eliminates the hierarchical structure or attribute-based feature of the previous generic constructions which is meaningful from a feasibility perspective

    Secure Remote Storage of Logs with Search Capabilities

    Get PDF
    Dissertação de Mestrado em Engenharia InformáticaAlong side with the use of cloud-based services, infrastructure and storage, the use of application logs in business critical applications is a standard practice nowadays. Such application logs must be stored in an accessible manner in order to used whenever needed. The debugging of these applications is a common situation where such access is required. Frequently, part of the information contained in logs records is sensitive. This work proposes a new approach of storing critical logs in a cloud-based storage recurring to searchable encryption, inverted indexing and hash chaining techniques to achieve, in a unified way, the needed privacy, integrity and authenticity while maintaining server side searching capabilities by the logs owner. The designed search algorithm enables conjunctive keywords queries plus a fine-grained search supported by field searching and nested queries, which are essential in the referred use case. To the best of our knowledge, the proposed solution is also the first to introduce a query language that enables complex conjunctive keywords and a fine-grained search backed by field searching and sub queries.A gerac¸ ˜ao de logs em aplicac¸ ˜oes e a sua posterior consulta s˜ao fulcrais para o funcionamento de qualquer neg´ocio ou empresa. Estes logs podem ser usados para eventuais ac¸ ˜oes de auditoria, uma vez que estabelecem uma baseline das operac¸ ˜oes realizadas. Servem igualmente o prop´ osito de identificar erros, facilitar ac¸ ˜oes de debugging e diagnosticar bottlennecks de performance. Tipicamente, a maioria da informac¸ ˜ao contida nesses logs ´e considerada sens´ıvel. Quando estes logs s˜ao armazenados in-house, as considerac¸ ˜oes relacionadas com anonimizac¸ ˜ao, confidencialidade e integridade s˜ao geralmente descartadas. Contudo, com o advento das plataformas cloud e a transic¸ ˜ao quer das aplicac¸ ˜oes quer dos seus logs para estes ecossistemas, processos de logging remotos, seguros e confidenciais surgem como um novo desafio. Adicionalmente, regulac¸ ˜ao como a RGPD, imp˜oe que as instituic¸ ˜oes e empresas garantam o armazenamento seguro dos dados. A forma mais comum de garantir a confidencialidade consiste na utilizac¸ ˜ao de t ´ecnicas criptogr ´aficas para cifrar a totalidade dos dados anteriormente `a sua transfer ˆencia para o servidor remoto. Caso sejam necess´ arias capacidades de pesquisa, a abordagem mais simples ´e a transfer ˆencia de todos os dados cifrados para o lado do cliente, que proceder´a `a sua decifra e pesquisa sobre os dados decifrados. Embora esta abordagem garanta a confidencialidade e privacidade dos dados, rapidamente se torna impratic ´avel com o crescimento normal dos registos de log. Adicionalmente, esta abordagem n˜ao faz uso do potencial total que a cloud tem para oferecer. Com base nesta tem´ atica, esta tese prop˜oe o desenvolvimento de uma soluc¸ ˜ao de armazenamento de logs operacionais de forma confidencial, integra e autˆ entica, fazendo uso das capacidades de armazenamento e computac¸ ˜ao das plataformas cloud. Adicionalmente, a possibilidade de pesquisa sobre os dados ´e mantida. Essa pesquisa ´e realizada server-side diretamente sobre os dados cifrados e sem acesso em momento algum a dados n˜ao cifrados por parte do servidor..

    A NOVEL AND CAPABLE SCHEME ASSURANCE DATA PRIVACY OF ENCRYPTION CATEGORY

    Get PDF
    During this paper, we must have another critical property of smooth projective hash functions. We introduce two games, namely semantic-security against selected keyword attack as well as in distinguish ability against keyword guessing attack1 to capture the safety of PEKS ciphers text and trapdoor, correspondingly. A principal component of our construction for dual-server public key file encryption with keyword search is smooth projective hash function, an idea created by Cramer and Shoup.  In spite of being free of secret key distribution, PEKS schemes are afflicted by an natural insecurity concerning the trapdoor keyword privacy, namely inside Keyword Guessing Attack. Regrettably, it has been established the conventional PEKS framework is struggling with an all-natural insecurity known as inside keyword guessing attack launched using the malicious server. To handle this security vulnerability, we advise a totally new PEKS framework named dual-server PEKS. You have to show a regular construction of secure DS-PEKS from LH-SPHF. Our plan is easily the most efficient when it comes to PEKS computation. For the reason that our plan doesn't include pairing computation. Particularly, the present plan necessitates the most computation cost because of 2 pairing computation per PEKS generation
    corecore