86 research outputs found

    Investigating perceptual congruence between information and sensory parameters in auditory and vibrotactile displays

    Get PDF
    A fundamental interaction between a computer and its user(s) is the transmission of information between the two and there are many situations where it is necessary for this interaction to occur non-visually, such as using sound or vibration. To design successful interactions in these modalities, it is necessary to understand how users perceive mappings between information and acoustic or vibration parameters, so that these parameters can be designed such that they are perceived as congruent. This thesis investigates several data-sound and data-vibration mappings by using psychophysical scaling to understand how users perceive the mappings. It also investigates the impact that using these methods during design has when they are integrated into an auditory or vibrotactile display. To investigate acoustic parameters that may provide more perceptually congruent data-sound mappings, Experiments 1 and 2 explored several psychoacoustic parameters for use in a mapping. These studies found that applying amplitude modulation — or roughness — to a signal, or applying broadband noise to it resulted in performance which were similar to conducting the task visually. Experiments 3 and 4 used scaling methods to map how a user perceived a change in an information parameter, for a given change in an acoustic or vibrotactile parameter. Experiment 3 showed that increases in acoustic parameters that are generally considered undesirable in music were perceived as congruent with information parameters with negative valence such as stress or danger. Experiment 4 found that data-vibration mappings were more generalised — a given increase in a vibrotactile parameter was almost always perceived as an increase in an information parameter — regardless of the valence of the information parameter. Experiments 5 and 6 investigated the impact that using results from the scaling methods used in Experiments 3 and 4 had on users' performance when using an auditory or vibrotactile display. These experiments also explored the impact that the complexity of the context which the display was placed had on user performance. These studies found that using mappings based on scaling results did not significantly impact user's performance with a simple auditory display, but it did reduce response times in a more complex use-case

    The temporal pattern of impulses in primary afferents analogously encodes touch and hearing information

    Full text link
    An open question in neuroscience is the contribution of temporal relations between individual impulses in primary afferents in conveying sensory information. We investigated this question in touch and hearing, while looking for any shared coding scheme. In both systems, we artificially induced temporally diverse afferent impulse trains and probed the evoked perceptions in human subjects using psychophysical techniques. First, we investigated whether the temporal structure of a fixed number of impulses conveys information about the magnitude of tactile intensity. We found that clustering the impulses into periodic bursts elicited graded increases of intensity as a function of burst impulse count, even though fewer afferents were recruited throughout the longer bursts. The interval between successive bursts of peripheral neural activity (the burst-gap) has been demonstrated in our lab to be the most prominent temporal feature for coding skin vibration frequency, as opposed to either spike rate or periodicity. Given the similarities between tactile and auditory systems, second, we explored the auditory system for an equivalent neural coding strategy. By using brief acoustic pulses, we showed that the burst-gap is a shared temporal code for pitch perception between the modalities. Following this evidence of parallels in temporal frequency processing, we next assessed the perceptual frequency equivalence between the two modalities using auditory and tactile pulse stimuli of simple and complex temporal features in cross-sensory frequency discrimination experiments. Identical temporal stimulation patterns in tactile and auditory afferents produced equivalent perceived frequencies, suggesting an analogous temporal frequency computation mechanism. The new insights into encoding tactile intensity through clustering of fixed charge electric pulses into bursts suggest a novel approach to convey varying contact forces to neural interface users, requiring no modulation of either stimulation current or base pulse frequency. Increasing control of the temporal patterning of pulses in cochlear implant users might improve pitch perception and speech comprehension. The perceptual correspondence between touch and hearing not only suggests the possibility of establishing cross-modal comparison standards for robust psychophysical investigations, but also supports the plausibility of cross-sensory substitution devices

    Perceptual Model-Driven Authoring of Plausible Vibrations from User Expectations for Virtual Environments

    Get PDF
    One of the central goals of design is the creation of experiences that are rated favorably in the intended application context. User expectations play an integral role in tactile product quality and tactile plausibility judgments alike. In the vibrotactile authoring process for virtual environments, vibra-tion is created to match the user’s expectations of the presented situational context. Currently, inefficient trial and error approaches attempt to match expectations implicitly. A more efficient, model-driven procedure based explicitly on tactile user expectations would thus be beneficial for author-ing vibrations. In everyday life, we are frequently exposed to various whole-body vibrations. Depending on their temporal and spectral proper-ties we intuitively associate specific perceptual properties such as “tin-gling”. This suggests a systematic relationship between physical parame-ters and perceptual properties. To communicate with potential users about such elicited or expected tactile properties, a standardized design language is proposed. It contains a set of sensory tactile perceptual attributes, which are sufficient to characterize the perceptual space of vibration encountered in everyday life. This design language enables the assessment of quantita-tive tactile perceptual specifications by laypersons that are elicited in situational contexts such as auditory-visual-tactile vehicle scenes. Howev-er, such specifications can also be assessed by providing only verbal de-scriptions of the content of these scenes. Quasi identical ratings observed for both presentation modes suggest that tactile user expectations can be quantified even before any vibration is presented. Such expected perceptu-al specifications are the prerequisite for a subsequent translation into phys-ical vibration parameters. Plausibility can be understood as a similarity judgment between elicited features and expected features. Thus, plausible vibration can be synthesized by maximizing the similarity of the elicited perceptual properties to the expected perceptual properties. Based on the observed relationships between vibration parameters and sensory tactile perceptual attributes, a 1-nearest-neighbor model and a regression model were built. The plausibility of the vibrations synthesized by these models in the context of virtual auditory-visual-tactile vehicle scenes was validat-ed in a perceptual study. The results demonstrated that the perceptual spec-ifications obtained with the design language are sufficient to synthesize vibrations, which are perceived as equally plausible as recorded vibrations in a given situational context. Overall, the demonstrated design method can be a new, more efficient tool for designers authoring vibrations for virtual environments or creating tactile feedback. The method enables further automation of the design process and thus potential time and cost reductions.:Preface III Abstract V Zusammenfassung VII List of Abbreviations XV 1 Introduction 1 1.1 General Introduction 1 1.1 Objectives of the Thesis 4 1.2 Structure of the Thesis 4 2. Tactile Perception in Real and Virtual Environments 7 2.1 Tactile Perception as a Multilayered Process 7 2.1.1 Physical Layer 8 2.1.2 Mechanoreceptor Layer 9 2.1.3 Sensory Layer 19 2.1.4 Affective Layer 26 2.2 Perception of Virtual Environments 29 2.2.1 The Place Illusion 29 2.2.2 The Plausibility Illusion 31 2.3 Approaches for the Authoring of Vibrations 38 2.3.1 Approaches on the Physical Layer 38 2.3.2 Approaches on the Mechanoreceptor Layer 40 2.3.3 Approaches on the Sensory Layer 40 2.3.4 Approaches on the Affective Layer 43 2.4 Summary 43 3. Research Concept 47 3.1 Research Questions 47 3.1.1 Foundations of the Research Concept 47 3.1.2 Research Concept 49 3.2 Limitations 50 4. Development of the Experimental Setup 53 4.1 Hardware 53 4.1.1 Optical Reproduction System 53 4.1.2 Acoustical Reproduction System 54 4.1.3 Whole-Body Vibration Reproduction System 56 4.2 Software 64 4.2.1 Combination of Reproduction Systems for Unimodal and Multimodal Presentation 64 4.2.2 Conducting Perceptual Studies 65 5. Assessment of a Sensory Tactile Design Language for Characterizing Vibration 67 5.1.1 Design Language Requirements 67 5.1.2 Method to Assess the Design Language 69 5.1.3 Goals of this Chapter 70 5.2 Tactile Stimuli 72 5.2.1 Generalization into Excitation Patterns 72 5.2.2 Definition of Parameter Values of the Excitation Patterns 75 5.2.3 Generation of the Stimuli 85 5.2.4 Summary 86 5.3 Assessment of the most relevant Sensory Tactile Perceptual Attributes 86 5.3.1 Experimental Design 87 5.3.2 Participants 88 5.3.3 Results 88 5.3.4 Aggregation and Prioritization 89 5.3.5 Summary 91 5.4 Identification of the Attributes forming the Design Language 92 5.4.1 Experimental Design 93 5.4.2 Participants 95 5.4.3 Results 95 5.4.4 Selecting the Elements of the Sensory Tactile Design Language 106 5.4.5 Summary 109 5.5 Summary and Discussion 109 5.5.1 Summary 109 5.5.2 Discussion 111 6. Quantification of Expected Properties with the Sensory Tactile Design Language 115 6.1 Multimodal Stimuli 116 6.1.1 Selection of the Scenes 116 6.1.2 Recording of the Scenes 117 6.1.3 Recorded Stimuli 119 6.2 Qualitative Communication in the Presence of Vibration 123 6.2.1 Experimental Design 123 6.2.2 Participants 124 6.2.3 Results 124 6.2.4 Summary 126 6.3 Quantitative Communication in the Presence of Vibration 126 6.3.1 Experimental Design 127 6.3.2 Participants 127 6.3.3 Results 127 6.3.4 Summary 129 6.4 Quantitative Communication in the Absence of Vibration 129 6.4.1 Experimental Design 130 6.4.2 Participants 132 6.4.3 Results 132 6.4.4 Summary 134 6.5 Summary and Discussion 135 7. Synthesis Models for the Translation of Sensory Tactile Properties into Vibration 137 7.1 Formalization of the Tactile Plausibility Illusion for Models 139 7.1.1 Formalization of Plausibility 139 7.1.2 Model Boundaries 143 7.2 Investigation of the Influence of Vibration Level on Attribute Ratings 144 7.2.1 Stimuli 145 7.2.2 Experimental Design 145 7.2.3 Participants 146 7.2.4 Results 146 7.2.5 Summary 148 7.3 Comparison of Modulated Vibration to Successive Impulse-like Vibration 148 7.3.1 Stimuli 149 7.3.2 Experimental Design 151 7.3.3 Participants 151 7.3.4 Results 151 7.3.5 Summary 153 7.4 Synthesis Based on the Discrete Estimates of a k-Nearest-Neighbor Classifier 153 7.4.1 Definition of the K-Nearest-Neighbor Classifier 154 7.4.2 Analysis Model 155 7.4.3 Synthesis Model 156 7.4.4 Interpolation of acceleration level for the vibration attribute profile pairs 158 7.4.5 Implementation of the Synthesis 159 7.4.6 Advantages and Disadvantages 164 7.5 Synthesis Based on the Quasi-Continuous Estimates of Regression Models 166 7.5.1 Overall Model Structure 168 7.5.2 Classification of the Excitation Pattern with a Support Vector Machine 171 7.5.3 General Approach to the Regression Models of each Excitation Pattern 178 7.5.4 Synthesis for the Impulse-like Excitation Pattern 181 7.5.5 Synthesis for the Bandlimited White Gaussian Noise Excitation Pattern 187 7.5.6 Synthesis for the Amplitude Modulated Sinusoidal Excitation Pattern 193 7.5.7 Synthesis for the Sinusoidal Excitation Pattern 199 7.5.8 Implementation of the Synthesis 205 7.5.9 Advantages and Disadvantages of the Approach 208 7.6 Validation of the Synthesis Models 210 7.6.1 Stimuli 212 7.6.2 Experimental Design 212 7.6.3 Participants 214 7.6.4 Results 214 7.6.5 Summary 219 7.7 Summary and Discussion 219 7.7.1 Summary 219 7.7.2 Discussion 222 8. General Discussion and Outlook 227 Acknowledgment 237 References 237Eines der zentralen Ziele des Designs von Produkten oder virtuellen Um-gebungen ist die Schaffung von Erfahrungen, die im beabsichtigten An-wendungskontext die Erwartungen der Benutzer erfĂŒllen. GegenwĂ€rtig versucht man im vibrotaktilen Authoring-Prozess mit ineffizienten Trial-and-Error-Verfahren, die Erwartungen an den dargestellten, virtuellen Situationskontext implizit zu erfĂŒllen. Ein effizienteres, modellgetriebenes Verfahren, das explizit auf den taktilen Benutzererwartungen basiert, wĂ€re daher von Vorteil. Im Alltag sind wir hĂ€ufig verschiedenen Ganzkörper-schwingungen ausgesetzt. AbhĂ€ngig von ihren zeitlichen und spektralen Eigenschaften assoziieren wir intuitiv bestimmte Wahrnehmungsmerkmale wie z.B. “kribbeln”. Dies legt eine systematische Beziehung zwischen physikalischen Parametern und Wahrnehmungsmerkmalen nahe. Um mit potentiellen Nutzern ĂŒber hervorgerufene oder erwartete taktile Eigen-schaften zu kommunizieren, wird eine standardisierte Designsprache vor-geschlagen. Sie enthĂ€lt eine Menge von sensorisch-taktilen Wahrneh-mungsmerkmalen, die hinreichend den Wahrnehmungsraum der im Alltag auftretenden Vibrationen charakterisieren. Diese Entwurfssprache ermög-licht die quantitative Beurteilung taktiler Wahrnehmungsmerkmale, die in Situationskontexten wie z.B. auditiv-visuell-taktilen Fahrzeugszenen her-vorgerufen werden. Solche Wahrnehmungsspezifikationen können jedoch auch bewertet werden, indem der Inhalt dieser Szenen verbal beschrieben wird. Quasi identische Bewertungen fĂŒr beide PrĂ€sentationsmodi deuten darauf hin, dass die taktilen Benutzererwartungen quantifiziert werden können, noch bevor eine Vibration prĂ€sentiert wird. Die erwarteten Wahr-nehmungsspezifikationen sind die Voraussetzung fĂŒr eine anschließende Übersetzung in physikalische Schwingungsparameter. Plausible Vibratio-nen können synthetisiert werden, indem die erwarteten Wahrnehmungs-merkmale hervorgerufen werden. Auf der Grundlage der beobachteten Beziehungen zwischen SchwingungsÂŹparametern und sensorisch-taktilen Wahrnehmungsmerkmalen wurden ein 1-Nearest-Neighbor-Modell und ein Regressionsmodell erstellt. Die PlausibilitĂ€t der von diesen Modellen synthetisierten Schwingungen im Kontext virtueller, auditorisch-visuell-taktiler Fahrzeugszenen wurde in einer Wahrnehmungsstudie validiert. Die Ergebnisse zeigten, dass die mit der Designsprache gewonnenen Wahr-nehmungsspezifikationen ausreichen, um Schwingungen zu synthetisieren, die in einem gegebenen Situationskontext als ebenso plausibel empfunden werden wie aufgezeichnete Schwingungen. Die demonstrierte Entwurfsme-thode stellt ein neues, effizienteres Werkzeug fĂŒr Designer dar, die Schwingungen fĂŒr virtuelle Umgebungen erstellen oder taktiles Feedback fĂŒr Produkte erzeugen.:Preface III Abstract V Zusammenfassung VII List of Abbreviations XV 1 Introduction 1 1.1 General Introduction 1 1.1 Objectives of the Thesis 4 1.2 Structure of the Thesis 4 2. Tactile Perception in Real and Virtual Environments 7 2.1 Tactile Perception as a Multilayered Process 7 2.1.1 Physical Layer 8 2.1.2 Mechanoreceptor Layer 9 2.1.3 Sensory Layer 19 2.1.4 Affective Layer 26 2.2 Perception of Virtual Environments 29 2.2.1 The Place Illusion 29 2.2.2 The Plausibility Illusion 31 2.3 Approaches for the Authoring of Vibrations 38 2.3.1 Approaches on the Physical Layer 38 2.3.2 Approaches on the Mechanoreceptor Layer 40 2.3.3 Approaches on the Sensory Layer 40 2.3.4 Approaches on the Affective Layer 43 2.4 Summary 43 3. Research Concept 47 3.1 Research Questions 47 3.1.1 Foundations of the Research Concept 47 3.1.2 Research Concept 49 3.2 Limitations 50 4. Development of the Experimental Setup 53 4.1 Hardware 53 4.1.1 Optical Reproduction System 53 4.1.2 Acoustical Reproduction System 54 4.1.3 Whole-Body Vibration Reproduction System 56 4.2 Software 64 4.2.1 Combination of Reproduction Systems for Unimodal and Multimodal Presentation 64 4.2.2 Conducting Perceptual Studies 65 5. Assessment of a Sensory Tactile Design Language for Characterizing Vibration 67 5.1.1 Design Language Requirements 67 5.1.2 Method to Assess the Design Language 69 5.1.3 Goals of this Chapter 70 5.2 Tactile Stimuli 72 5.2.1 Generalization into Excitation Patterns 72 5.2.2 Definition of Parameter Values of the Excitation Patterns 75 5.2.3 Generation of the Stimuli 85 5.2.4 Summary 86 5.3 Assessment of the most relevant Sensory Tactile Perceptual Attributes 86 5.3.1 Experimental Design 87 5.3.2 Participants 88 5.3.3 Results 88 5.3.4 Aggregation and Prioritization 89 5.3.5 Summary 91 5.4 Identification of the Attributes forming the Design Language 92 5.4.1 Experimental Design 93 5.4.2 Participants 95 5.4.3 Results 95 5.4.4 Selecting the Elements of the Sensory Tactile Design Language 106 5.4.5 Summary 109 5.5 Summary and Discussion 109 5.5.1 Summary 109 5.5.2 Discussion 111 6. Quantification of Expected Properties with the Sensory Tactile Design Language 115 6.1 Multimodal Stimuli 116 6.1.1 Selection of the Scenes 116 6.1.2 Recording of the Scenes 117 6.1.3 Recorded Stimuli 119 6.2 Qualitative Communication in the Presence of Vibration 123 6.2.1 Experimental Design 123 6.2.2 Participants 124 6.2.3 Results 124 6.2.4 Summary 126 6.3 Quantitative Communication in the Presence of Vibration 126 6.3.1 Experimental Design 127 6.3.2 Participants 127 6.3.3 Results 127 6.3.4 Summary 129 6.4 Quantitative Communication in the Absence of Vibration 129 6.4.1 Experimental Design 130 6.4.2 Participants 132 6.4.3 Results 132 6.4.4 Summary 134 6.5 Summary and Discussion 135 7. Synthesis Models for the Translation of Sensory Tactile Properties into Vibration 137 7.1 Formalization of the Tactile Plausibility Illusion for Models 139 7.1.1 Formalization of Plausibility 139 7.1.2 Model Boundaries 143 7.2 Investigation of the Influence of Vibration Level on Attribute Ratings 144 7.2.1 Stimuli 145 7.2.2 Experimental Design 145 7.2.3 Participants 146 7.2.4 Results 146 7.2.5 Summary 148 7.3 Comparison of Modulated Vibration to Successive Impulse-like Vibration 148 7.3.1 Stimuli 149 7.3.2 Experimental Design 151 7.3.3 Participants 151 7.3.4 Results 151 7.3.5 Summary 153 7.4 Synthesis Based on the Discrete Estimates of a k-Nearest-Neighbor Classifier 153 7.4.1 Definition of the K-Nearest-Neighbor Classifier 154 7.4.2 Analysis Model 155 7.4.3 Synthesis Model 156 7.4.4 Interpolation of acceleration level for the vibration attribute profile pairs 158 7.4.5 Implementation of the Synthesis 159 7.4.6 Advantages and Disadvantages 164 7.5 Synthesis Based on the Quasi-Continuous Estimates of Regression Models 166 7.5.1 Overall Model Structure 168 7.5.2 Classification of the Excitation Pattern with a Support Vector Machine 171 7.5.3 General Approach to the Regression Models of each Excitation Pattern 178 7.5.4 Synthesis for the Impulse-like Excitation Pattern 181 7.5.5 Synthesis for the Bandlimited White Gaussian Noise Excitation Pattern 187 7.5.6 Synthesis for the Amplitude Modulated Sinusoidal Excitation Pattern 193 7.5.7 Synthesis for the Sinusoidal Excitation Pattern 199 7.5.8 Implementation of the Synthesis 205 7.5.9 Advantages and Disadvantages of the Approach 208 7.6 Validation of the Synthesis Models 210 7.6.1 Stimuli 212 7.6.2 Experimental Design 212 7.6.3 Participants 214 7.6.4 Results 214 7.6.5 Summary 219 7.7 Summary and Discussion 219 7.7.1 Summary 219 7.7.2 Discussion 222 8. General Discussion and Outlook 227 Acknowledgment 237 References 23

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Tactile Arrays for Virtual Textures

    Get PDF
    This thesis describes the development of three new tactile stimulators for active touch, i.e. devices to deliver virtual touch stimuli to the fingertip in response to exploratory movements by the user. All three stimulators are designed to provide spatiotemporal patterns of mechanical input to the skin via an array of contactors, each under individual computer control. Drive mechanisms are based on piezoelectric bimorphs in a cantilever geometry. The first of these is a 25-contactor array (5 × 5 contactors at 2 mm spacing). It is a rugged design with a compact drive system and is capable of producing strong stimuli when running from low voltage supplies. Combined with a PC mouse, it can be used for active exploration tasks. Pilot studies were performed which demonstrated that subjects could successfully use the device for discrimination of line orientation, simple shape identification and line following tasks. A 24-contactor stimulator (6 × 4 contactors at 2 mm spacing) with improved bandwidth was then developed. This features control electronics designed to transmit arbitrary waveforms to each channel (generated on-the-fly, in real time) and software for rapid development of experiments. It is built around a graphics tablet, giving high precision position capability over a large 2D workspace. Experiments using two-component stimuli (components at 40 Hz and 320 Hz) indicate that spectral balance within active stimuli is discriminable independent of overall intensity, and that the spatial variation (texture) within the target is easier to detect at 320 Hz that at 40 Hz. The third system developed (again 6 × 4 contactors at 2 mm spacing) was a lightweight modular stimulator developed for fingertip and thumb grasping tasks; furthermore it was integrated with force-feedback on each digit and a complex graphical display, forming a multi-modal Virtual Reality device for the display of virtual textiles. It is capable of broadband stimulation with real-time generated outputs derived from a physical model of the fabric surface. In an evaluation study, virtual textiles generated from physical measurements of real textiles were ranked in categories reflecting key mechanical and textural properties. The results were compared with a similar study performed on the real fabrics from which the virtual textiles had been derived. There was good agreement between the ratings of the virtual textiles and the real textiles, indicating that the virtual textiles are a good representation of the real textiles and that the system is delivering appropriate cues to the user

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Tactile perception of spatially distributed vibratory stimuli on the fingerpad

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (p. 86-87).Using a pin-array type tactile display as a stimulator of the finger pad, a psychophysical study was conducted on the vibrotactile perception. The passive touch with vibratory stimuli in the low frequency could be an alternative of the active touch for the presented stimuli: polygons, round shapes and gratings. As for the effect of frequency on the texture discrimination, the high correct answer proportions corresponded to the most sensitive frequency ranges of each mechanoreceptor. The spatial acuity decreased as the frequency of the stimuli increased when the stimuli presented by the equal number of contactors. As an analogy between color vision and tactile perception, a spatial configuration of the multiple contactors was proposed to deliver the intermediate pitch using the compound waveform defined as a sinusoidal stimulus which was presented by four contactors vibrating with 30Hz and 240Hz. The subjects felt qualitatively different the compound waveform and the pure-tone.(cont.) When the high frequency component had 3 times the intensity of the other component, the perceived frequency of the compound waveform was about 120Hz which was much lower than the component frequency 240Hz. The experimental results were explained by the hypothesis of a ratio code, neural mechanism signaling the frequency of vibratory stimuli based on the ratio of the one-to-one activated population of mechanoreceptors. In addition, the intensity of the components also affected the overall perceived frequency.by Minseung Ahn.S.M

    Vibrotactile Feedback for Application on Mobile Touch Screen Devices: Effects with Age

    Get PDF
    This thesis has investigated vibrotactile interactions for touch screen devices related to age, the study developed distinguishable vibrotactile patterns for evaluation by younger and older people, in order to inform the design process for the development of a haptic language. The study of haptic perception validated that the optimal sensation to vibration for both age groups is in the range of 100-300 Hz, which guides the design of the future vibrotactile patterns development. As part of the human perception study carried out, it was found that two of the seven semantic differential pairs tested, ‘slow-fast’ and ‘light-heavy’, are suitable to describe the feelings of haptic feedback for younger people however there was no clear agreement for older people. It is recommended that the magnitude estimation techniques can be used for the future experimental design. Finally, this study shows that haptic language could be developed using vibration with the respect to the parameters of amplitude, frequency, and frequency ramping. The amplitude of vibration plays a key role in determining whether people can adequately sense the message, whereas the frequency can be used to imply meaning. The study found that a signal at 200 Hz could be understood to have a positive meaning for the vibrotactile interaction. Frequency ramping could be an essential parameter to design a negative vibrotactile interaction, compared to amplitude ramping that has no significant influence for perception. Most people would require a certain level of training to learn a haptic language because humans have no pre- conception of vibrations other than as an alert. It is suggested that a scenario should be provided to the subjects for the valuation

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc
    • 

    corecore