9 research outputs found

    Wearable haptic systems for the fingertip and the hand: taxonomy, review and perspectives

    Get PDF
    In the last decade, we have witnessed a drastic change in the form factor of audio and vision technologies, from heavy and grounded machines to lightweight devices that naturally fit our bodies. However, only recently, haptic systems have started to be designed with wearability in mind. The wearability of haptic systems enables novel forms of communication, cooperation, and integration between humans and machines. Wearable haptic interfaces are capable of communicating with the human wearers during their interaction with the environment they share, in a natural and yet private way. This paper presents a taxonomy and review of wearable haptic systems for the fingertip and the hand, focusing on those systems directly addressing wearability challenges. The paper also discusses the main technological and design challenges for the development of wearable haptic interfaces, and it reports on the future perspectives of the field. Finally, the paper includes two tables summarizing the characteristics and features of the most representative wearable haptic systems for the fingertip and the hand

    A Soft touch: wearable dielectric elastomer actuated multi-finger soft tactile displays

    Get PDF
    PhDThe haptic modality in human-computer interfaces is significantly underutilised when compared to that of vision and sound. A potential reason for this is the difficulty in turning computer-generated signals into realistic sensations of touch. Moreover, wearable solutions that can be mounted onto multiple fingertips whilst still allowing for the free dexterous movements of the user’s hand, brings an even higher level of complexity. In order to be wearable, such devices should not only be compact, lightweight and energy efficient; but also, be able to render compelling tactile sensations. Current solutions are unable to meet these criteria, typically due to the actuation mechanisms employed. Aimed at addressing these needs, this work presents research into non-vibratory multi-finger wearable tactile displays, through the use of an improved configuration of a dielectric elastomer actuator. The described displays render forces through a soft bubble-like interface worn on the fingertip. Due to the improved design, forces of up to 1N can be generated in a form factor of 20 x 12 x 23 mm, with a weight of only 6g, demonstrating a significant performance increase in force output and wearability over existing tactile rendering systems. Furthermore, it is shown how these compact wearable devices can be used in conjunction with low-cost commercial optical hand tracking sensors, to cater for simple although accurate tactile interactions within virtual environments, using affordable instrumentation. The whole system makes it possible for users to interact with virtually generated soft body objects with programmable tactile properties. Through a 15-participant study, the system has been validated for three distinct types of touch interaction, including palpation and pinching of virtual deformable objects. Through this investigation, it is believed that this approach could have a significant impact within virtual and augmented reality interaction for purposes of medical simulation, professional training and improved tactile feedback in telerobotic control systems.Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training Centre EP/G03723X/

    ヒトの高周波振動知覚の類似特性に基づく触覚変調

    Get PDF
    Tohoku University昆陽雅司課

    Material Visualisation for Virtual Reality: The Perceptual Investigations

    Get PDF
    Material representation plays a significant role in design visualisation and evaluation. On one hand, the simulated material properties determine the appearance of product prototypes in digitally rendered scenes. On the other hand, those properties are perceived by the viewers in order to make important design decisions. As an approach to simulate a more realistic environment, Virtual Reality (VR) provides users a vivid impression of depth and embodies them into an immersive environment. However, the scientific understanding of material perception and its applications in VR is still fairly limited. This leads to this thesis’s research question on whether the material perception in VR is different from that in traditional 2D displays, as well as the potential of using VR as a design tool to facilitate material evaluation.       This thesis is initiated from studying the perceptual difference of rendered materials between VR and traditional 2D viewing modes. Firstly, through a pilot study, it is confirmed that users have different perceptual experiences of the same material in the two viewing modes. Following that initial finding, the research investigates in more details the perceptual difference with psychophysics methods, which help in quantifying the users’ perceptual responses. Using the perceptual scale as a measuring means, the research analyses the users’ judgment and recognition of the material properties under VR and traditional 2D display environments. In addition, the research also elicits the perceptual evaluation criteria to analyse the emotional aspects of materials. The six perceptual criteria are in semantic forms, including rigidity, formality, fineness, softness, modernity, and irregularity.       The results showed that VR could support users in making a more refined judgment of material properties. That is to say, the users perceive better the minute changes of material properties under immersive viewing conditions. In terms of emotional aspects, VR is advantageous in signifying the effects induced by visual textures, while the 2D viewing mode is more effective for expressing the characteristics of plain surfaces. This thesis has contributed to the deeper understanding of users’ perception of material appearances in Virtual Reality, which is critical in achieving an effective design visualisation using such a display medium
    corecore