117 research outputs found

    Acoustic Speaker Localization with Strong Reverberation and Adaptive Feature Filtering with a Bayes RFS Framework

    Get PDF
    The thesis investigates the challenges of speaker localization in presence of strong reverberation, multi-speaker tracking, and multi-feature multi-speaker state filtering, using sound recordings from microphones. Novel reverberation-robust speaker localization algorithms are derived from the signal and room acoustics models. A multi-speaker tracking filter and a multi-feature multi-speaker state filter are developed based upon the generalized labeled multi-Bernoulli random finite set framework. Experiments and comparative studies have verified and demonstrated the benefits of the proposed methods

    Music-listening systems

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Architecture, 2000.Includes bibliographical references (p. [235]-248).When human listeners are confronted with musical sounds, they rapidly and automatically orient themselves in the music. Even musically untrained listeners have an exceptional ability to make rapid judgments about music from very short examples, such as determining the music's style, performer, beat, complexity, and emotional impact. However, there are presently no theories of music perception that can explain this behavior, and it has proven very difficult to build computer music-analysis tools with similar capabilities. This dissertation examines the psychoacoustic origins of the early stages of music listening in humans, using both experimental and computer-modeling approaches. The results of this research enable the construction of automatic machine-listening systems that can make human-like judgments about short musical stimuli. New models are presented that explain the perception of musical tempo, the perceived segmentation of sound scenes into multiple auditory images, and the extraction of musical features from complex musical sounds. These models are implemented as signal-processing and pattern-recognition computer programs, using the principle of understanding without separation. Two experiments with human listeners study the rapid assignment of high-level judgments to musical stimuli, and it is demonstrated that many of the experimental results can be explained with a multiple-regression model on the extracted musical features. From a theoretical standpoint, the thesis shows how theories of music perception can be grounded in a principled way upon psychoacoustic models in a computational-auditory-scene-analysis framework. Further, the perceptual theory presented is more relevant to everyday listeners and situations than are previous cognitive-structuralist approaches to music perception and cognition. From a practical standpoint, the various models form a set of computer signal-processing and pattern-recognition tools that can mimic human perceptual abilities on a variety of musical tasks such as tapping along with the beat, parsing music into sections, making semantic judgments about musical examples, and estimating the similarity of two pieces of music.Eric D. Scheirer.Ph.D

    Survey of error concealment schemes for real-time audio transmission systems

    Get PDF
    This thesis presents an overview of the main strategies employed for error detection and error concealment in different real-time transmission systems for digital audio. The “Adaptive Differential Pulse-Code Modulation (ADPCM)”, the “Audio Processing Technology Apt-x100”, the “Extended Adaptive Multi-Rate Wideband (AMR-WB+)”, the “Advanced Audio Coding (AAC)”, the “MPEG-1 Audio Layer II (MP2)”, the “MPEG-1 Audio Layer III (MP3)” and finally the “Adaptive Transform Coder 3 (AC3)” are considered. As an example of error management, a simulation of the AMR-WB+ codec is included. The simulation allows an evaluation of the mechanisms included in the codec definition and enables also an evaluation of the different bit error sensitivities of the encoded audio payload.Ingeniería Técnica en Telemátic

    Signal-Adaptive and Perceptually Optimized Sound Zones with Variable Span Trade-Off Filters

    Get PDF
    Creating sound zones has been an active research field since the idea was first proposed. So far, most sound zone control methods rely on either an optimization of physical metrics such as acoustic contrast and signal distortion or a mode decomposition of the desired sound field. By using these types of methods, approximately 15 dB of acoustic contrast between the reproduced sound field in the target zone and its leakage to other zone(s) has been reported in practical set-ups, but this is typically not high enough to satisfy the people inside the zones. In this paper, we propose a sound zone control method shaping the leakage errors so that they are as inaudible as possible for a given acoustic contrast. The shaping of the leakage errors is performed by taking the time-varying input signal characteristics and the human auditory system into account when the loudspeaker control filters are calculated. We show how this shaping can be performed using variable span trade-off filters, and we show theoretically how these filters can be used for trading signal distortion in the target zone for acoustic contrast. The proposed method is evaluated based on physical metrics such as acoustic contrast and perceptual metrics such as STOI. The computational complexity and processing time of the proposed method for different system set-ups are also investigated. Lastly, the results of a MUSHRA listening test are reported. The test results show that the proposed method provides more than 20% perceptual improvement compared to existing sound zone control methods.Comment: Accepted for publication in IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSIN

    Pipelined implementation of Jpeg image compression using Hdl

    Full text link
    This thesis presents the architecture and design of a JPEG compressor for color images using VHDL. The system consists of major parts like color space converter, down sampler, 2-D DCT module, quantization, zigzag scanning and entropy coDing The color space conversion transforms the RGB colors to YCbCr color coDing The down sampling operation reduces the sampling rate of the color information (Cb and Cr). The 2-D DCT transform the pixel data from the spatial domain to the frequency domain. The quantization operation eliminates the high frequency components and the small amplitude coefficients of the co-sine expansion. Finally, the entropy coding uses run-length encoding (RLE), Huffman, variable length coding (VLC) and differential coding to decrease the number of bits used to represent the image. The JPEG compression is a lossy compression, since downsampling and quantization operations are irreversible. But the losses can be controlled in order to keep the necessary image quality; Architectures for these parts were designed and described in VHDL. The results were observed using Active-HDL simulator and the code being synthesized using xilinx ise for vertex-4 FPGA. This pipelined architecture has a minimum latency of 187 clock cycles

    Binaural Cue Coding - Part I: Psychoacoustic Fundamentals and Design Principles

    Get PDF
    • …
    corecore