12 research outputs found

    Fiedler matrices: numerical and structural properties

    Get PDF
    The first and second Frobenius companion matrices appear frequently in numerical application, but it is well known that they possess many properties that are undesirable numerically, which limit their use in applications. Fiedler companion matrices, or Fiedler matrices for brevity, introduced in 2003, is a family of matrices which includes the two Frobenius matrices. The main goal of this work is to study whether or not Fiedler companion matrices can be used with more reliability than the Frobenius ones in the numerical applications where Frobenius matrices are used. For this reason, in this work we present a thorough study of Fiedler matrices: their structure and numerical properties, where we mean by numerical properties those properties that are interesting for applying these matrices in numerical computations, and some of their applications in the field on numerical linear algebra. The introduction of Fiedler companion matrices is an example of a simple idea that has been very influential in the development of several lines of research in the numerical linear algebra field. This family of matrices has important connections with a number of topics of current interest, including: polynomial root finding algorithms, linearizations of matrix polynomials, unitary Hessenberg matrices, CMV matrices, Green’s matrices, orthogonal polynomials, rank structured matrices, quasiseparable and semiseparable matrices, etc.Programa Oficial de Doctorado en Ingeniería MatemáticaPresidente: Paul Van Dooren.- Secretario: Juan Bernardo Zaballa Tejada.- Vocal: Françoise Tisseu

    05391 Abstracts Collection -- Algebraic and Numerical Algorithms and Computer-assisted Proofs

    Get PDF
    From 25.09.05 to 30.09.05, the Dagstuhl Seminar 05391 ``Algebraic and Numerical Algorithms and Computer-assisted Proofs\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. Links to extended abstracts or full papers are provided, if available

    On approximate triangular decompositions in dimension zero

    Get PDF
    Abstract. Triangular decompositions for systems of polynomial equations with n variables, with exact coefficients are well-developed theoretically and in terms of implemented algorithms in computer algebra systems. However there is much less research about triangular decompositions for systems with approximate coefficients. In this paper we discuss the zero-dimensional case, of systems having finitely many roots. Our methods depend on having approximations for all the roots, and these are provided by the homotopy continuation methods of Sommese, Verschelde and Wampler. We introduce approximate equiprojectable decompositions for such systems, which represent a generalization of the recently developed analogous concept for exact systems. We demonstrate experimentally the favourable computational features of this new approach, and give a statistical analysis of its error. Keywords. Symbolic-numeric computations, Triangular decompositions, Dimension zero, Polynomial system solving

    Hybrid Symbolic-Numeric Computing in Linear and Polynomial Algebra

    Get PDF
    In this thesis, we introduce hybrid symbolic-numeric methods for solving problems in linear and polynomial algebra. We mainly address the approximate GCD problem for polynomials, and problems related to parametric and polynomial matrices. For symbolic methods, our main concern is their complexity and for the numerical methods we are more concerned about their stability. The thesis consists of 5 articles which are presented in the following order: Chapter 1, deals with the fundamental notions of conditioning and backward error. Although our results are not novel, this chapter is a novel explication of conditioning and backward error that underpins the rest of the thesis. In Chapter 2, we adapt Victor Y. Pan\u27s root-based algorithm for finding approximate GCD to the case where the polynomials are expressed in Bernstein bases. We use the numerically stable companion pencil of G. F. JĂłnsson to compute the roots, and the Hopcroft-Karp bipartite matching method to find the degree of the approximate GCD. We offer some refinements to improve the process. In Chapter 3, we give an algorithm with similar idea to Chapter 2, which finds an approximate GCD for a pair of approximate polynomials given in a Lagrange basis. More precisely, we suppose that these polynomials are given by their approximate values at distinct known points. We first find each of their roots by using a Lagrange basis companion matrix for each polynomial. We introduce new clustering algorithms and use them to cluster the roots of each polynomial to identify multiple roots, and then marry the two polynomials using a Maximum Weight Matching (MWM) algorithm, to find their GCD. In Chapter 4, we define ``generalized standard triples\u27\u27 X, zC1 - C0, Y of regular matrix polynomials P(z) in order to use the representation X(zC1 - C0)-1 Y=P-1(z). This representation can be used in constructing algebraic linearizations; for example, for H(z) = z A(z)B(z) + C from linearizations for A(z) and B(z). This can be done even if A(z) and B(z) are expressed in differing polynomial bases. Our main theorem is that X can be expressed using the coefficients of 1 in terms of the relevant polynomial basis. For convenience we tabulate generalized standard triples for orthogonal polynomial bases, the monomial basis, and Newton interpolational bases; for the Bernstein basis; for Lagrange interpolational bases; and for Hermite interpolational bases. We account for the possibility of common similarity transformations. We give explicit proofs for the less familiar bases. Chapter 5 is devoted to parametric linear systems (PLS) and related problems, from a symbolic computational point of view. PLS are linear systems of equations in which some symbolic parameters, that is, symbols that are not considered to be candidates for elimination or solution in the course of analyzing the problem, appear in the coefficients of the system. We assume that the symbolic parameters appear polynomially in the coefficients and that the only variables to be solved for are those of the linear system. It is well-known that it is possible to specify a covering set of regimes, each of which is a semi-algebraic condition on the parameters together with a solution description valid under that condition.We provide a method of solution that requires time polynomial in the matrix dimension and the degrees of the polynomials when there are up to three parameters. Our approach exploits the Hermite and Smith normal forms that may be computed when the system coefficient domain is mapped to the univariate polynomial domain over suitably constructed fields. Our approach effectively identifies intrinsic singularities and ramification points where the algebraic and geometric structure of the matrix changes. Specially parametric eigenvalue problems can be addressed as well. Although we do not directly address the problem of computing the Jordan form, our approach allows the construction of the algebraic and geometric eigenvalue multiplicities revealed by the Frobenius form, which is a key step in the construction of the Jordan form of a matrix

    Noncoherent Short-Packet Communication via Modulation on Conjugated Zeros

    Get PDF
    We introduce a novel blind (noncoherent) communication scheme, called modulation on conjugate-reciprocal zeros (MOCZ), to reliably transmit short binary packets over unknown finite impulse response systems as used, for example, to model underspread wireless multipath channels. In MOCZ, the information is modulated onto the zeros of the transmitted signals z−transform. In the absence of additive noise, the zero structure of the signal is perfectly preserved at the receiver, no matter what the channel impulse response (CIR) is. Furthermore, by a proper selection of the zeros, we show that MOCZ is not only invariant to the CIR, but also robust against additive noise. Starting with the maximum-likelihood estimator, we define a low complexity and reliable decoder and compare it to various state-of-the art noncoherent schemes

    Methodik zur Integration von Vorwissen in die Modellbildung

    Get PDF
    This book describes how prior knowledge about dynamical systems and functions can be integrated in mathematical modelling. The first part comprises the transformation of the known properties into a mathematical model and the second part explains four approaches for solving the resulting constrained optimization problems. Numerous examples, tables and compilations complete the book
    corecore