18 research outputs found

    Generalized Pseudospectral Shattering and Inverse-Free Matrix Pencil Diagonalization

    Full text link
    We present a randomized, inverse-free algorithm for producing an approximate diagonalization of any n×nn \times n matrix pencil (A,B)(A,B). The bulk of the algorithm rests on a randomized divide-and-conquer eigensolver for the generalized eigenvalue problem originally proposed by Ballard, Demmel, and Dumitriu [Technical Report 2010]. We demonstrate that this divide-and-conquer approach can be formulated to succeed with high probability as long as the input pencil is sufficiently well-behaved, which is accomplished by generalizing the recent pseudospectral shattering work of Banks, Garza-Vargas, Kulkarni, and Srivastava [Foundations of Computational Mathematics 2022]. In particular, we show that perturbing and scaling (A,B)(A,B) regularizes its pseudospectra, allowing divide-and-conquer to run over a simple random grid and in turn producing an accurate diagonalization of (A,B)(A,B) in the backward error sense. The main result of the paper states the existence of a randomized algorithm that with high probability (and in exact arithmetic) produces invertible S,TS,T and diagonal DD such that ASDT12ε||A - SDT^{-1}||_2 \leq \varepsilon and BSIT12ε||B - SIT^{-1}||_2 \leq \varepsilon in at most O(log(n)log2(nε)TMM(n))O \left( \log(n) \log^2 \left( \frac{n}{\varepsilon} \right) T_{\text{MM}}(n) \right) operations, where TMM(n)T_{\text{MM}}(n) is the asymptotic complexity of matrix multiplication. This not only provides a new set of guarantees for highly parallel generalized eigenvalue solvers but also establishes nearly matrix multiplication time as an upper bound on the complexity of exact arithmetic matrix pencil diagonalization.Comment: 58 pages, 8 figures, 2 table

    Pseudospectra, critical points and multiple eigenvalues of matrix polynomials

    Get PDF
    AbstractWe develop a general framework for perturbation analysis of matrix polynomials. More specifically, we show that the normed linear space Lm(Cn×n) of n-by-n matrix polynomials of degree at most m provides a natural framework for perturbation analysis of matrix polynomials in Lm(Cn×n). We present a family of natural norms on the space Lm(Cn×n) and show that the norms on the spaces Cm+1 and Cn×n play a crucial role in the perturbation analysis of matrix polynomials. We define pseudospectra of matrix polynomials in the general framework of the normed space Lm(Cn×n) and show that the pseudospectra of matrix polynomials well known in the literature follow as special cases. We analyze various properties of pseudospectra in the unified framework of the normed space Lm(Cn×n). We analyze critical points of backward errors of approximate eigenvalues of matrix polynomials and show that each critical point is a multiple eigenvalue of an appropriately perturbed polynomial. We show that common boundary points of components of pseudospectra of matrix polynomials are critical points. As a consequence, we show that a solution of Wilkinson’s problem for matrix polynomials can be read off from the pseudospectra of matrix polynomials

    Nonnormality in Lyapunov Equations

    Get PDF
    The singular values of the solution to a Lyapunov equation determine the potential accuracy of the low-rank approximations constructed by iterative methods. Low- rank solutions are more accurate if most of the singular values are small, so a priori bounds that describe coefficient matrix properties that correspond to rapid singular value decay are valuable. Previous bounds take similar forms, all of which weaken (quadratically) as the coefficient matrix departs from normality. Such bounds suggest that the more nonnormal the coefficient matrix becomes, the slower the singular values of the solution will decay. However, simple examples typically exhibit an eventual acceleration of decay if the coefficient becomes very nonnormal. We will show that this principle is universal: decay always improves as departure from normality increases beyond a given threshold, specifically as the numerical range of the coefficient matrix extends farther into the right half-plane. We also give examples showing that similar behavior can occur for general Sylvester equations, though the right-hand side plays a more important role

    Structured Eigenvalue Problems

    Get PDF
    Most eigenvalue problems arising in practice are known to be structured. Structure is often introduced by discretization and linearization techniques but may also be a consequence of properties induced by the original problem. Preserving this structure can help preserve physically relevant symmetries in the eigenvalues of the matrix and may improve the accuracy and efficiency of an eigenvalue computation. The purpose of this brief survey is to highlight these facts for some common matrix structures. This includes a treatment of rather general concepts such as structured condition numbers and backward errors as well as an overview of algorithms and applications for several matrix classes including symmetric, skew-symmetric, persymmetric, block cyclic, Hamiltonian, symplectic and orthogonal matrices

    A block Newton method for nonlinear eigenvalue problems

    Get PDF
    We consider matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. One of the most fundamental differences from the linear case is that distinct eigenvalues may have linearly dependent eigenvectors or even share the same eigenvector. This has been a severe hindrance in the development of general numerical schemes for computing several eigenvalues of a nonlinear eigenvalue problem, either simultaneously or subsequently. The purpose of this work is to show that the concept of invariant pairs offers a way of representing eigenvalues and eigenvectors that is insensitive to this phenomenon. To demonstrate the use of this concept in the development of numerical methods, we have developed a novel block Newton method for computing such invariant pairs. Algorithmic aspects of this method are considered and a few academic examples demonstrate its viabilit

    Computing the density of states for optical spectra by low-rank and QTT tensor approximation

    Get PDF
    In this paper, we introduce a new interpolation scheme to approximate the density of states (DOS) for a class of rank-structured matrices with application to the Tamm-Dancoff approximation (TDA) of the Bethe-Salpeter equation (BSE). The presented approach for approximating the DOS is based on two main techniques. First, we propose an economical method for calculating the traces of parametric matrix resolvents at interpolation points by taking advantage of the block-diagonal plus low-rank matrix structure described in [6, 3] for the BSE/TDA problem. Second, we show that a regularized or smoothed DOS discretized on a fine grid of size NN can be accurately represented by a low rank quantized tensor train (QTT) tensor that can be determined through a least squares fitting procedure. The latter provides good approximation properties for strictly oscillating DOS functions with multiple gaps, and requires asymptotically much fewer (O(logN)O(\log N)) functional calls compared with the full grid size NN. This approach allows us to overcome the computational difficulties of the traditional schemes by avoiding both the need of stochastic sampling and interpolation by problem independent functions like polynomials etc. Numerical tests indicate that the QTT approach yields accurate recovery of DOS associated with problems that contain relatively large spectral gaps. The QTT tensor rank only weakly depends on the size of a molecular system which paves the way for treating large-scale spectral problems.Comment: 26 pages, 25 figure

    A block Newton method for nonlinear eigenvalue problems

    Get PDF
    We consider matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. One of the most fundamental differences from the linear case is that distinct eigenvalues may have linearly dependent eigenvectors or even share the same eigenvector. This has been a severe hindrance in the development of general numerical schemes for computing several eigenvalues of a nonlinear eigenvalue problem, either simultaneously or subsequently. The purpose of this work is to show that the concept of invariant pairs offers a way of representing eigenvalues and eigenvectors that is insensitive to this phenomenon. To demonstrate the use of this concept in the development of numerical methods, we have developed a novel block Newton method for computing such invariant pairs. Algorithmic aspects of this method are considered and a few academic examples demonstrate its viability. © Springer-Verlag 2009
    corecore