54 research outputs found

    Determining the Contribution of Visual and Haptic Cues during Compliance Discrimination in the Context of Minimally Invasive Surgery

    Get PDF
    While minimally invasive surgery is replacing open surgery in an increasing number of surgical procedures, it still poses risks such as unintended tissue damage due to reduced visual and haptic feedback. Surgeons assess tissue health by analysing mechanical properties such as compliance. The literature shows that while both types of feedback contribute to the final percept, visual information is dominant during compliance discrimination tasks. The magnitude of that contribution, however, was never quantitatively determined. To determine the effect of the type of visual feedback on compliance discrimination, a psychophysical experiment was set up using different combinations of direct and indirect visual and haptic cues. Results reiterated the significance of visual information and suggested a visio-haptic cross-modal integration. Consequently, to determine which cues contributed most to visual feedback, the impact of force and position on the ability to discriminate compliance using visual information only was assessed. Results showed that isolating force and position cues during indentation enhanced performance. Furthermore, under force and position constraints, visual information was shown to be sufficient to determine the compliance of deformable objects. A pseudo-haptic feedback system was developed to quantitatively determine the contribution of visual feedback during compliance discrimination. A psychophysical experiment showed that the system realistically simulated viscoelastic behaviour of compliant objects. Through a magnitude estimation experiment, the pseudo-haptic system was shown to be successful at generating haptic sensations of compliance during stimuli indentation only by modifying the visual feedback presented to participants. This can be implemented in research and educational facilities where advanced force feedback devices are inaccessible. Moreover, it can be incorporated into virtual reality simulators to enhance force ranges. Future work will assess the value of visual cue augmentation in more complicated surgical tasks

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Wearable haptic systems for the fingertip and the hand: taxonomy, review and perspectives

    Get PDF
    In the last decade, we have witnessed a drastic change in the form factor of audio and vision technologies, from heavy and grounded machines to lightweight devices that naturally fit our bodies. However, only recently, haptic systems have started to be designed with wearability in mind. The wearability of haptic systems enables novel forms of communication, cooperation, and integration between humans and machines. Wearable haptic interfaces are capable of communicating with the human wearers during their interaction with the environment they share, in a natural and yet private way. This paper presents a taxonomy and review of wearable haptic systems for the fingertip and the hand, focusing on those systems directly addressing wearability challenges. The paper also discusses the main technological and design challenges for the development of wearable haptic interfaces, and it reports on the future perspectives of the field. Finally, the paper includes two tables summarizing the characteristics and features of the most representative wearable haptic systems for the fingertip and the hand

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Challenges of controlling the rotation of virtual objects with variable grip using force-feedback gloves

    Get PDF
    Some virtual reality (VR) applications require true-to-life object manipulation, such as for training or teleoperation. We investigate an interaction technique that replicates the variable grip strength applied to a held object when using force-feedback gloves in VR. We map the exerted finger pressure to the rotational freedom of the virtual object. With a firm grip, the object’s orientation is fixed to the hand. With a loose grip, the user can allow the object to rotate freely within the hand. A user study (N = 21) showed how challenging it was for participants to control the object’s rotation with our prototype employing the SenseGlove DK1. Despite high action fidelity, the grip variability led to poorer performance and increased task load compared to the default fixed rotation. We suspect low haptic fidelity as an explanation as only kinesthetic forces but no cutaneous cues are rendered. We discuss the system design limitations and how to overcome them in future haptic interfaces for physics-based multi-finger object manipulation

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    The Making of Meaning through Dyadic Haptic Affective Touch

    Get PDF
    Despite the importance of touch in human-human relations, research in affective tactile practices is in its infancy, lacking in-depth understanding needed to inform the design of remote digital touch communication. This paper reports two qualitative studies that explore tactile affective communication in specific social contexts, and the bi-directional creation, sending and interpretation of digital touch messages using a purpose-built research tool, the Tactile Emoticon. The system comprises a pair of remotely connected mitts which enable users in different locations to communicate through tactile messages, by orchestrating duration and level of three haptic sensations: vibration, pressure and temperature. Qualitative analysis shows the nuanced ways in which 68 participants configured these elements to make meaning from touch messages they sent and received. It points to the affect and emotion of touch, its sensoriality and ambiguity, the significance of context, social norms and expectations of touch participants. Findings suggest key design considerations for digital touch communication, where the emphasis shifts from generating ‘recognizable touches’ to tools that allow people to shape their touches and establish common understanding about their meaning

    Effect of Visual Information on Active Touch During Mirror Visual Feedback

    Get PDF
    Several studies have demonstrated that observation of a dummy or mirror-reflected hand being stroked or moving at the same time as the hidden hand evokes a feeling that the dummy hand is one’s own, such as the rubber hand illusion (RHI) and mirror visual feedback (MVF). Under these conditions, participants also report sensing the tactile stimulation applied to the fake hands, suggesting that tactile perception is modulated by visual information during the RHI and MVF. Previous studies have utilized passive stimulation conditions; however, active touch is more common in real-world settings. Therefore, we investigated whether active touch is also modulated by visual information during an MVF scenario. Twenty-three participants (13 men and 10 women; mean age ± SD: 21.6 ± 2.0 years) were required to touch a polyurethane pad with both hands synchronously, and estimate the hardness of the pad while observing the mirror reflection. When participants observed the mirror reflection of the other hand pushing a softer or harder pad, perceived hardness estimates were significantly biased toward softer or harder, respectively, even though the physical hardness of the pad remained constant. Furthermore, perceived hardness exhibited a strong correlation with finger displacement of the mirrored, but not hidden, hand. The modulatory effects on perceived hardness diminished when participants touched the pad with both hands asynchronously or with their eyes closed. Moreover, participants experienced ownership of the mirrored hand when they touched the pad with both hands synchronously but not asynchronously. These results indicate that hardness estimates were modulated by observation of the mirrored hand during synchronous touch conditions. The present study demonstrates that, similar to passive touch, active touch is also modulated by visual input

    Advancing proxy-based haptic feedback in virtual reality

    Get PDF
    This thesis advances haptic feedback for Virtual Reality (VR). Our work is guided by Sutherland's 1965 vision of the ultimate display, which calls for VR systems to control the existence of matter. To push towards this vision, we build upon proxy-based haptic feedback, a technique characterized by the use of passive tangible props. The goal of this thesis is to tackle the central drawback of this approach, namely, its inflexibility, which yet hinders it to fulfill the vision of the ultimate display. Guided by four research questions, we first showcase the applicability of proxy-based VR haptics by employing the technique for data exploration. We then extend the VR system's control over users' haptic impressions in three steps. First, we contribute the class of Dynamic Passive Haptic Feedback (DPHF) alongside two novel concepts for conveying kinesthetic properties, like virtual weight and shape, through weight-shifting and drag-changing proxies. Conceptually orthogonal to this, we study how visual-haptic illusions can be leveraged to unnoticeably redirect the user's hand when reaching towards props. Here, we contribute a novel perception-inspired algorithm for Body Warping-based Hand Redirection (HR), an open-source framework for HR, and psychophysical insights. The thesis concludes by proving that the combination of DPHF and HR can outperform the individual techniques in terms of the achievable flexibility of the proxy-based haptic feedback.Diese Arbeit widmet sich haptischem Feedback fĂŒr Virtual Reality (VR) und ist inspiriert von Sutherlands Vision des ultimativen Displays, welche VR-Systemen die FĂ€higkeit zuschreibt, Materie kontrollieren zu können. Um dieser Vision nĂ€her zu kommen, baut die Arbeit auf dem Konzept proxy-basierter Haptik auf, bei der haptische EindrĂŒcke durch anfassbare Requisiten vermittelt werden. Ziel ist es, diesem Ansatz die fĂŒr die Realisierung eines ultimativen Displays nötige FlexibilitĂ€t zu verleihen. Dazu bearbeiten wir vier Forschungsfragen und zeigen zunĂ€chst die Anwendbarkeit proxy-basierter Haptik durch den Einsatz der Technik zur Datenexploration. Anschließend untersuchen wir in drei Schritten, wie VR-Systeme mehr Kontrolle ĂŒber haptische EindrĂŒcke von Nutzern erhalten können. Hierzu stellen wir Dynamic Passive Haptic Feedback (DPHF) vor, sowie zwei Verfahren, die kinĂ€sthetische EindrĂŒcke wie virtuelles Gewicht und Form durch Gewichtsverlagerung und VerĂ€nderung des Luftwiderstandes von Requisiten vermitteln. ZusĂ€tzlich untersuchen wir, wie visuell-haptische Illusionen die Hand des Nutzers beim Greifen nach Requisiten unbemerkt umlenken können. Dabei stellen wir einen neuen Algorithmus zur Body Warping-based Hand Redirection (HR), ein Open-Source-Framework, sowie psychophysische Erkenntnisse vor. Abschließend zeigen wir, dass die Kombination von DPHF und HR proxy-basierte Haptik noch flexibler machen kann, als es die einzelnen Techniken alleine können
    • 

    corecore