36 research outputs found

    Combinatorial Methods in Coding Theory

    Get PDF
    This thesis is devoted to a range of questions in applied mathematics and signal processing motivated by applications in error correction, compressed sensing, and writing on non-volatile memories. The underlying thread of our results is the use of diverse combinatorial methods originating in coding theory and computer science. The thesis addresses three groups of problems. The first of them is aimed at the construction and analysis of codes for error correction. Here we examine properties of codes that are constructed using random and structured graphs and hypergraphs, with the main purpose of devising new decoding algorithms as well as estimating the distribution of Hamming weights in the resulting codes. Some of the results obtained give the best known estimates of the number of correctable errors for codes whose decoding relies on local operations on the graph. In the second part we address the question of constructing sampling operators for the compressed sensing problem. This topic has been the subject of a large body of works in the literature. We propose general constructions of sampling matrices based on ideas from coding theory that act as near-isometric maps on almost all sparse signal. This matrices can be used for dimensionality reduction and compressed sensing. In the third part we study the problem of reliable storage of information in non-volatile memories such as flash drives. This problem gives rise to a writing scheme that relies on relative magnitudes of neighboring cells, known as rank modulation. We establish the exact asymptotic behavior of the size of codes for rank modulation and suggest a number of new general constructions of such codes based on properties of finite fields as well as combinatorial considerations

    High-Dimensional Inference on Dense Graphs with Applications to Coding Theory and Machine Learning

    Get PDF
    We are living in the era of "Big Data", an era characterized by a voluminous amount of available data. Such amount is mainly due to the continuing advances in the computational capabilities for capturing, storing, transmitting and processing data. However, it is not always the volume of data that matters, but rather the "relevant" information that resides in it. Exactly 70 years ago, Claude Shannon, the father of information theory, was able to quantify the amount of information in a communication scenario based on a probabilistic model of the data. It turns out that Shannon's theory can be adapted to various probability-based information processing fields, ranging from coding theory to machine learning. The computation of some information theoretic quantities, such as the mutual information, can help in setting fundamental limits and devising more efficient algorithms for many inference problems. This thesis deals with two different, yet intimately related, inference problems in the fields of coding theory and machine learning. We use Bayesian probabilistic formulations for both problems, and we analyse them in the asymptotic high-dimensional regime. The goal of our analysis is to assess the algorithmic performance on the first hand and to predict the Bayes-optimal performance on the second hand, using an information theoretic approach. To this end, we employ powerful analytical tools from statistical physics. The first problem is a recent forward-error-correction code called sparse superposition code. We consider the extension of such code to a large class of noisy channels by exploiting the similarity with the compressed sensing paradigm. Moreover, we show the amenability of sparse superposition codes to perform joint distribution matching and channel coding. In the second problem, we study symmetric rank-one matrix factorization, a prominent model in machine learning and statistics with many applications ranging from community detection to sparse principal component analysis. We provide an explicit expression for the normalized mutual information and the minimum mean-square error of this model in the asymptotic limit. This allows us to prove the optimality of a certain iterative algorithm on a large set of parameters. A common feature of the two problems stems from the fact that both of them are represented on dense graphical models. Hence, similar message-passing algorithms and analysis tools can be adopted. Furthermore, spatial coupling, a new technique introduced in the context of low-density parity-check (LDPC) codes, can be applied to both problems. Spatial coupling is used in this thesis as a "construction technique" to boost the algorithmic performance and as a "proof technique" to compute some information theoretic quantities. Moreover, both of our problems retain close connections with spin glass models studied in statistical mechanics of disordered systems. This allows us to use sophisticated techniques developed in statistical physics. In this thesis, we use the potential function predicted by the replica method in order to prove the threshold saturation phenomenon associated with spatially coupled models. Moreover, one of the main contributions of this thesis is proving that the predictions given by the "heuristic" replica method are exact. Hence, our results could be of great interest for the statistical physics community as well, as they help to set a rigorous mathematical foundation of the replica predictions

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282
    corecore