919 research outputs found

    MV3: A new word based stream cipher using rapid mixing and revolving buffers

    Full text link
    MV3 is a new word based stream cipher for encrypting long streams of data. A direct adaptation of a byte based cipher such as RC4 into a 32- or 64-bit word version will obviously need vast amounts of memory. This scaling issue necessitates a look for new components and principles, as well as mathematical analysis to justify their use. Our approach, like RC4's, is based on rapidly mixing random walks on directed graphs (that is, walks which reach a random state quickly, from any starting point). We begin with some well understood walks, and then introduce nonlinearity in their steps in order to improve security and show long term statistical correlations are negligible. To minimize the short term correlations, as well as to deter attacks using equations involving successive outputs, we provide a method for sequencing the outputs derived from the walk using three revolving buffers. The cipher is fast -- it runs at a speed of less than 5 cycles per byte on a Pentium IV processor. A word based cipher needs to output more bits per step, which exposes more correlations for attacks. Moreover we seek simplicity of construction and transparent analysis. To meet these requirements, we use a larger state and claim security corresponding to only a fraction of it. Our design is for an adequately secure word-based cipher; our very preliminary estimate puts the security close to exhaustive search for keys of size < 256 bits.Comment: 27 pages, shortened version will appear in "Topics in Cryptology - CT-RSA 2007

    Authenticated tree parity machine key exchange

    Full text link
    The synchronisation of Tree Parity Machines (TPMs), has proven to provide a valuable alternative concept for secure symmetric key exchange. Yet, from a cryptographer's point of view, authentication is at least as important as a secure exchange of keys. Adding an authentication via hashing e.g. is straightforward but with no relation to Neural Cryptography. We consequently formulate an authenticated key exchange within this concept. Another alternative, integrating a Zero-Knowledge protocol into the synchronisation, is also presented. A Man-In-The-Middle attack and even all currently known attacks, that are based on using identically structured TPMs and synchronisation as well, can so be averted. This in turn has practical consequences on using the trajectory in weight space. Both suggestions have the advantage of not affecting the previously observed physics of this interacting system at all.Comment: This work directly relates to cond-mat/0202112 (see also http://arxiv.org/find/cond-mat/1/au:+Kinzel/0/1/0/all/0/1

    Efficient Quantum Pseudorandomness

    Get PDF
    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g. in computation, communication and control. Fully random transformations require exponential time for either classical or quantum systems, but in many case pseudorandom operations can emulate certain properties of truly random ones. Indeed in the classical realm there is by now a well-developed theory of such pseudorandom operations. However the construction of such objects turns out to be much harder in the quantum case. Here we show that random quantum circuits are a powerful source of quantum pseudorandomness. This gives the for the first time a polynomialtime construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography and to understanding self-equilibration of closed quantum dynamics.Comment: 6 pages, 1 figure. Short version of http://arxiv.org/abs/1208.069

    Post-Quantum Key Exchange Protocols

    Full text link
    If an eavesdropper Eve is equipped with quantum computers, she can easily break the public key exchange protocols used today. In this paper we will discuss the post-quantum Diffie-Hellman key exchange and private key exchange protocols.Comment: 11 pages, 2 figures. Submitted to SPIE DSS 2006; v2 citation typos fixed; v3 appendix typos correcte

    Collision Times in Multicolor Urn Models and Sequential Graph Coloring With Applications to Discrete Logarithms

    Get PDF
    Consider an urn model where at each step one of qq colors is sampled according to some probability distribution and a ball of that color is placed in an urn. The distribution of assigning balls to urns may depend on the color of the ball. Collisions occur when a ball is placed in an urn which already contains a ball of different color. Equivalently, this can be viewed as sequentially coloring a complete qq-partite graph wherein a collision corresponds to the appearance of a monochromatic edge. Using a Poisson embedding technique, the limiting distribution of the first collision time is determined and the possible limits are explicitly described. Joint distribution of successive collision times and multi-fold collision times are also derived. The results can be used to obtain the limiting distributions of running times in various birthday problem based algorithms for solving the discrete logarithm problem, generalizing previous results which only consider expected running times. Asymptotic distributions of the time of appearance of a monochromatic edge are also obtained for other graphs.Comment: Minor revision. 35 pages, 2 figures. To appear in Annals of Applied Probabilit

    Complexity Theory

    Get PDF
    Computational Complexity Theory is the mathematical study of the intrinsic power and limitations of computational resources like time, space, or randomness. The current workshop focused on recent developments in various sub-areas including arithmetic complexity, Boolean complexity, communication complexity, cryptography, probabilistic proof systems, pseudorandomness, and quantum computation. Many of the developments are related to diverse mathematical fields such as algebraic geometry, combinatorial number theory, probability theory, representation theory, and the theory of error-correcting codes
    corecore