4,590 research outputs found

    Pseudo-Marginal Slice Sampling

    Get PDF
    Markov chain Monte Carlo (MCMC) methods asymptotically sample from complex probability distributions. The pseudo-marginal MCMC framework only requires an unbiased estimator of the unnormalized probability distribution function to construct a Markov chain. However, the resulting chains are harder to tune to a target distribution than conventional MCMC, and the types of updates available are limited. We describe a general way to clamp and update the random numbers used in a pseudo-marginal method's unbiased estimator. In this framework we can use slice sampling and other adaptive methods. We obtain more robust Markov chains, which often mix more quickly.Comment: 9 pages, 6 figures, 1 table. Version 2 includes citations to closely-related work released on arXiv since version

    Driving Markov chain Monte Carlo with a dependent random stream

    Full text link
    Markov chain Monte Carlo is a widely-used technique for generating a dependent sequence of samples from complex distributions. Conventionally, these methods require a source of independent random variates. Most implementations use pseudo-random numbers instead because generating true independent variates with a physical system is not straightforward. In this paper we show how to modify some commonly used Markov chains to use a dependent stream of random numbers in place of independent uniform variates. The resulting Markov chains have the correct invariant distribution without requiring detailed knowledge of the stream's dependencies or even its marginal distribution. As a side-effect, sometimes far fewer random numbers are required to obtain accurate results.Comment: 16 pages, 4 figure

    Adaptive Multiple Importance Sampling for Gaussian Processes

    Get PDF
    In applications of Gaussian processes where quantification of uncertainty is a strict requirement, it is necessary to accurately characterize the posterior distribution over Gaussian process covariance parameters. Normally, this is done by means of standard Markov chain Monte Carlo (MCMC) algorithms. Motivated by the issues related to the complexity of calculating the marginal likelihood that can make MCMC algorithms inefficient, this paper develops an alternative inference framework based on Adaptive Multiple Importance Sampling (AMIS). This paper studies the application of AMIS in the case of a Gaussian likelihood, and proposes the Pseudo-Marginal AMIS for non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results suggest that the proposed framework outperforms MCMC-based inference of covariance parameters in a wide range of scenarios and remains competitive for moderately large dimensional parameter spaces.Comment: 27 page

    Pseudo-marginal Bayesian inference for Gaussian process latent variable models

    Get PDF
    A Bayesian inference framework for supervised Gaussian process latent variable models is introduced. The framework overcomes the high correlations between latent variables and hyperparameters by collapsing the statistical model through approximate integration of the latent variables. Using an unbiased pseudo estimate for the marginal likelihood, the exact hyperparameter posterior can then be explored using collapsed Gibbs sampling and, conditional on these samples, the exact latent posterior can be explored through elliptical slice sampling. The framework is tested on both simulated and real examples. When compared with the standard approach based on variational inference, this approach leads to significant improvements in the predictive accuracy and quantification of uncertainty, as well as a deeper insight into the challenges of performing inference in this class of models

    Premium: An R package for profile regression mixture models using dirichlet processes

    Get PDF
    PReMiuM is a recently developed R package for Bayesian clustering using a Dirichlet process mixture model. This model is an alternative to regression models, nonparametrically linking a response vector to covariate data through cluster membership (Molitor, Papathomas, Jerrett, and Richardson 2010). The package allows binary, categorical, count and continuous response, as well as continuous and discrete covariates. Additionally, predictions may be made for the response, and missing values for the covariates are handled. Several samplers and label switching moves are implemented along with diagnostic tools to assess convergence. A number of R functions for post-processing of the output are also provided. In addition to fitting mixtures, it may additionally be of interest to determine which covariates actively drive the mixture components. This is implemented in the package as variable selection

    Accelerating Metropolis-Hastings algorithms: Delayed acceptance with prefetching

    Full text link
    MCMC algorithms such as Metropolis-Hastings algorithms are slowed down by the computation of complex target distributions as exemplified by huge datasets. We offer in this paper an approach to reduce the computational costs of such algorithms by a simple and universal divide-and-conquer strategy. The idea behind the generic acceleration is to divide the acceptance step into several parts, aiming at a major reduction in computing time that outranks the corresponding reduction in acceptance probability. The division decomposes the "prior x likelihood" term into a product such that some of its components are much cheaper to compute than others. Each of the components can be sequentially compared with a uniform variate, the first rejection signalling that the proposed value is considered no further, This approach can in turn be accelerated as part of a prefetching algorithm taking advantage of the parallel abilities of the computer at hand. We illustrate those accelerating features on a series of toy and realistic examples.Comment: 20 pages, 12 figures, 2 tables, submitte
    • …
    corecore