53 research outputs found

    Semi-Supervised Discriminant Analysis Using Robust Path-Based Similarity

    Get PDF
    Linear Discriminant Analysis (LDA), which works by maximizing the within-class similarity and minimizing the between-class similarity simultaneously, is a popular dimensionality reduction technique in pattern recognition and machine learning. In real-world applications when labeled data are limited, LDA does not work well. Under many situations, however, it is easy to obtain unlabeled data in large quantities. In this paper, we propose a novel dimensionality reduction method, called Semi-Supervised Discriminant Analysis (SSDA), which can utilize both labeled and unlabeled data to perform dimensionality reduction in the semisupervised setting. Our method uses a robust path-based similarity measure to capture the manifold structure of the data and then uses the obtained similarity to maximize the separability between different classes. A kernel extension of the proposed method for nonlinear dimensionality reduction in the semi-supervised setting is also presented. Experiments on face recognition demonstrate the effectiveness of the proposed method. 1

    A Multi-Stage Classifier for Face Recognition Undertaken by Coarse-to-fine Strategy

    Get PDF
    Face recognition has been a very active research area for past two decades due to its widely applications such as identity authentication, airport security and access control, surveillance, and video retrieval systems, etc. Numerous approaches have been proposed for face recognition and considerable successes have been reported [1]. A successful face recognitio

    Multiresolution Methods in Face Recognition

    Get PDF

    A unified framework for subspace based face recognition.

    Get PDF
    Wang Xiaogang.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 88-91).Abstracts in English and Chinese.Abstract --- p.iAcknowledgments --- p.vTable of Contents --- p.viList of Figures --- p.viiiList of Tables --- p.xChapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Face recognition --- p.1Chapter 1.2 --- Subspace based face recognition technique --- p.2Chapter 1.3 --- Unified framework for subspace based face recognition --- p.4Chapter 1.4 --- Discriminant analysis in dual intrapersonal subspaces --- p.5Chapter 1.5 --- Face sketch recognition and hallucination --- p.6Chapter 1.6 --- Organization of this thesis --- p.7Chapter Chapter 2 --- Review of Subspace Methods --- p.8Chapter 2.1 --- PCA --- p.8Chapter 2.2 --- LDA --- p.9Chapter 2.3 --- Bayesian algorithm --- p.12Chapter Chapter 3 --- A Unified Framework --- p.14Chapter 3.1 --- PCA eigenspace --- p.16Chapter 3.2 --- Intrapersonal and extrapersonal subspaces --- p.17Chapter 3.3 --- LDA subspace --- p.18Chapter 3.4 --- Comparison of the three subspaces --- p.19Chapter 3.5 --- L-ary versus binary classification --- p.22Chapter 3.6 --- Unified subspace analysis --- p.23Chapter 3.7 --- Discussion --- p.26Chapter Chapter 4 --- Experiments on Unified Subspace Analysis --- p.28Chapter 4.1 --- Experiments on FERET database --- p.28Chapter 4.1.1 --- PCA Experiment --- p.28Chapter 4.1.2 --- Bayesian experiment --- p.29Chapter 4.1.3 --- Bayesian analysis in reduced PCA subspace --- p.30Chapter 4.1.4 --- Extract discriminant features from intrapersonal subspace --- p.33Chapter 4.1.5 --- Subspace analysis using different training sets --- p.34Chapter 4.2 --- Experiments on the AR face database --- p.36Chapter 4.2.1 --- "Experiments on PCA, LDA and Bayes" --- p.37Chapter 4.2.2 --- Evaluate the Bayesian algorithm for different transformation --- p.38Chapter Chapter 5 --- Discriminant Analysis in Dual Subspaces --- p.41Chapter 5.1 --- Review of LDA in the null space of and direct LDA --- p.42Chapter 5.1.1 --- LDA in the null space of --- p.42Chapter 5.1.2 --- Direct LDA --- p.43Chapter 5.1.3 --- Discussion --- p.44Chapter 5.2 --- Discriminant analysis in dual intrapersonal subspaces --- p.45Chapter 5.3 --- Experiment --- p.50Chapter 5.3.1 --- Experiment on FERET face database --- p.50Chapter 5.3.2 --- Experiment on the XM2VTS database --- p.53Chapter Chapter 6 --- Eigentransformation: Subspace Transform --- p.54Chapter 6.1 --- Face sketch recognition --- p.54Chapter 6.1.1 --- Eigentransformation --- p.56Chapter 6.1.2 --- Sketch synthesis --- p.59Chapter 6.1.3 --- Face sketch recognition --- p.61Chapter 6.1.4 --- Experiment --- p.63Chapter 6.2 --- Face hallucination --- p.69Chapter 6.2.1 --- Multiresolution analysis --- p.71Chapter 6.2.2 --- Eigentransformation for hallucination --- p.72Chapter 6.2.3 --- Discussion --- p.75Chapter 6.2.4 --- Experiment --- p.77Chapter 6.3 --- Discussion --- p.83Chapter Chapter 7 --- Conclusion --- p.85Publication List of This Thesis --- p.87Bibliography --- p.8

    A survey of face detection, extraction and recognition

    Get PDF
    The goal of this paper is to present a critical survey of existing literatures on human face recognition over the last 4-5 years. Interest and research activities in face recognition have increased significantly over the past few years, especially after the American airliner tragedy on September 11 in 2001. While this growth largely is driven by growing application demands, such as static matching of controlled photographs as in mug shots matching, credit card verification to surveillance video images, identification for law enforcement and authentication for banking and security system access, advances in signal analysis techniques, such as wavelets and neural networks, are also important catalysts. As the number of proposed techniques increases, survey and evaluation becomes important

    Facial Analysis: Looking at Biometric Recognition and Genome-Wide Association

    Get PDF

    Vision: a web service for face recognition using convolutional network

    Get PDF
    This paper proposes a face recognition module built as a web service. We introduce a novel design and mechanism for face recognition on a web platform and to memorize most recent users for the user. This web service is called Vision and developed using the Flask and TensorFlow deep learning framework. The face recognition process is powered by FaceNet deep convolutional network model. The face recognition process done by Vision could also be utilized for user authentication and user memorization, both done in on a web platform. As a demonstration of concept and viability, in this study, Vision is integrated into a web-based voice chatbot. The testing and evaluation of Vision’s face recognition process show an overall F-score of one for all test scenarios
    corecore