130 research outputs found

    Design of linear regression based localization algorithms for wireless sensor networks

    Get PDF

    Localization Process for WSNs with Various Grid-Based Topology Using Artificial Neural Network

    Get PDF
    Wireless Sensor Network (WSN) is a technology that can aid human life by providing ubiquitous communication, sensing, and computing capabilities. It allows people to be more able to interact with the environment. The environment contains many nodes to monitor and collect data. Localizing nodes distributed in different locations covering different regions is a challenge in WSN. Localization of accurate and low-cost sensors is an urgent need to deploy WSN in various applications. In this paper, we propose an artificial automatic neural network method for sensor node localization. The proposed method in WSN is implemented with network-based topology in different regions. To demonstrate the accuracy of the proposed method, we compared the estimated locations of the proposed feedforward neural network (FFNN) with the estimated locations of the deep feedforward neural network (DFF) and the weighted centroid localization (WCL) algorithm based on the strength of the received signal index. The proposed FFNN model outperformed alternative methods in terms of its lower average localization error which is 0.056m. Furthermore, it demonstrated its capability to predict sensor locations in wireless sensor networks (WSNs) across various grid-based topologies

    Localization Process for WSNs with Various Grid-Based Topology Using Artificial Neural Network

    Get PDF
    Wireless Sensor Network (WSN) is a technology that can aid human life by providing ubiquitous communication, sensing, and computing capabilities. It allows people to be more able to interact with the environment. The environment contains many nodes to monitor and collect data. Localizing nodes distributed in different locations covering different regions is a challenge in WSN. Localization of accurate and low-cost sensors is an urgent need to deploy WSN in various applications. In this paper, we propose an artificial automatic neural network method for sensor node localization. The proposed method in WSN is implemented with network-based topology in different regions. To demonstrate the accuracy of the proposed method, we compared the estimated locations of the proposed feedforward neural network (FFNN) with the estimated locations of the deep feedforward neural network (DFF) and the weighted centroid localization (WCL) algorithm based on the strength of the received signal index. The proposed FFNN model outperformed alternative methods in terms of its lower average localization error which is 0.056m. Furthermore, it demonstrated its capability to predict sensor locations in wireless sensor networks (WSNs) across various grid-based topologies

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    A Review of Radio Frequency Based Localization for Aerial and Ground Robots with 5G Future Perspectives

    Full text link
    Efficient localization plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned aerial vehicles (UAVs), which would contribute to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities for enhancing localization of UAVs and UGVs. In this paper, we review the radio frequency (RF) based approaches for localization. We review the RF features that can be utilized for localization and investigate the current methods suitable for Unmanned vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localization for both UAVs and UGVs is examined, and the envisioned 5G NR for localization enhancement, and the future research direction are explored

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot

    Generalizable Deep-Learning-Based Wireless Indoor Localization

    Get PDF
    The growing interest in indoor localization has been driven by its wide range of applications in areas such as smart homes, industrial automation, and healthcare. With the increasing reliance on wireless devices for location-based services, accurate estimation of device positions within indoor environments has become crucial. Deep learning approaches have shown promise in leveraging wireless parameters like Channel State Information (CSI) and Received Signal Strength Indicator (RSSI) to achieve precise localization. However, despite their success in achieving high accuracy, these deep learning models suffer from limited generalizability, making them unsuitable for deployment in new or dynamic environments without retraining. To address the generalizability challenge faced by conventionally trained deep learning localization models, we propose the use of meta-learning-based approaches. By leveraging meta-learning, we aim to improve the models\u27 ability to adapt to new environments without extensive retraining. Additionally, since meta-learning algorithms typically require diverse datasets from various scenarios, which can be difficult to collect specifically for localization tasks, we introduce a novel meta-learning algorithm called TB-MAML (Task Biased Model Agnostic Meta Learning). This algorithm is specifically designed to enhance generalization when dealing with limited datasets. Finally, we conduct an evaluation to compare the performance of TB-MAML-based localization with conventionally trained localization models and other meta-learning algorithms in the context of indoor localization

    Identifying High-Traffic Patterns in the Workplace With Radio Tomographic Imaging in 3D Wireless Sensor Networks

    Get PDF
    The rapid progress of wireless communication and embedded mircro-sensing electro-mechanical systems (MEMS) technologies has resulted in a growing confidence in the use of wireless sensor networks (WSNs) comprised of low-cost, low-power devices performing various monitoring tasks. Radio Tomographic Imaging (RTI) is a technology for localizing, tracking, and imaging device-free objects in a WSN using the change in received signal strength (RSS) of the radio links the object is obstructing. This thesis employs an experimental indoor three-dimensional (3-D) RTI network constructed of 80 wireless radios in a 100 square foot area. Experimental results are presented from a series of stationary target localization and target tracking experiments using one and two targets. Preliminary results demonstrate a 3-D RTI network can be effectively used to generate 3-D RSS-based images to extract target features such as size and height, and identify high-traffic patterns in the workplace by tracking asset movement
    corecore