758 research outputs found

    Symbolic calculus on the time-frequency half-plane

    Get PDF
    The study concerns a special symbolic calculus of interest for signal analysis. This calculus associates functions on the time-frequency half-plane f>0 with linear operators defined on the positive-frequency signals. Full attention is given to its construction which is entirely based on the study of the affine group in a simple and direct way. The correspondence rule is detailed and the associated Wigner function is given. Formulas expressing the basic operation (star-bracket) of the Lie algebra of symbols, which is isomorphic to that of the operators, are obtained. In addition, it is shown that the resulting calculus is covariant under a three-parameter group which contains the affine group as subgroup. This observation is the starting point of an investigation leading to a whole class of symbolic calculi which can be considered as modifications of the original one.Comment: 25 pages, Latex, minor changes and more references; to be published in the "Journal of Mathematical Physics" (special issue on "Wavelet and Time-Frequency Analysis"

    Uncertainty principles for magnetic structures on certain coadjoint orbits

    Full text link
    By building on our earlier work, we establish uncertainty principles in terms of Heisenberg inequalities and of the ambiguity functions associated with magnetic structures on certain coadjoint orbits of infinite-dimensional Lie groups. These infinite-dimensional Lie groups are semidirect products of nilpotent Lie groups and invariant function spaces thereon. The recently developed magnetic Weyl calculus is recovered in the special case of function spaces on abelian Lie groups.Comment: 19 page

    Covariant Affine Integral Quantization(s)

    Full text link
    Covariant affine integral quantization of the half-plane is studied and applied to the motion of a particle on the half-line. We examine the consequences of different quantizer operators built from weight functions on the half-plane. To illustrate the procedure, we examine two particular choices of the weight function, yielding thermal density operators and affine inversion respectively. The former gives rise to a temperature-dependent probability distribution on the half-plane whereas the later yields the usual canonical quantization and a quasi-probability distribution (affine Wigner function) which is real, marginal in both momentum p and position q.Comment: 36 pages, 10 figure

    Smoothed Affine Wigner Transform

    Get PDF
    We study a generalization of Husimi function in the context of wavelets. This leads to a nonnegative density on phase-space for which we compute the evolution equation corresponding to a Schr\"Aodinger equation

    Hudson's Theorem for finite-dimensional quantum systems

    Full text link
    We show that, on a Hilbert space of odd dimension, the only pure states to possess a non-negative Wigner function are stabilizer states. The Clifford group is identified as the set of unitary operations which preserve positivity. The result can be seen as a discrete version of Hudson's Theorem. Hudson established that for continuous variable systems, the Wigner function of a pure state has no negative values if and only if the state is Gaussian. Turning to mixed states, it might be surmised that only convex combinations of stabilizer states give rise to non-negative Wigner distributions. We refute this conjecture by means of a counter-example. Further, we give an axiomatic characterization which completely fixes the definition of the Wigner function and compare two approaches to stabilizer states for Hilbert spaces of prime-power dimensions. In the course of the discussion, we derive explicit formulas for the number of stabilizer codes defined on such systems.Comment: 17 pages, 3 figures; References updated. Title changed to match published version. See also quant-ph/070200

    Tomograms and other transforms. A unified view

    Full text link
    A general framework is presented which unifies the treatment of wavelet-like, quasidistribution, and tomographic transforms. Explicit formulas relating the three types of transforms are obtained. The case of transforms associated to the symplectic and affine groups is treated in some detail. Special emphasis is given to the properties of the scale-time and scale-frequency tomograms. Tomograms are interpreted as a tool to sample the signal space by a family of curves or as the matrix element of a projector.Comment: 19 pages latex, submitted to J. Phys. A: Math and Ge

    The Wigner caustic on shell and singularities of odd functions

    Full text link
    We study the Wigner caustic on shell of a Lagrangian submanifold L of affine symplectic space. We present the physical motivation for studying singularities of the Wigner caustic on shell and present its mathematical definition in terms of a generating family. Because such a generating family is an odd deformation of an odd function, we study simple singularities in the category of odd functions and their odd versal deformations, applying these results to classify the singularities of the Wigner caustic on shell, interpreting these singularities in terms of the local geometry of L.Comment: 24 page

    Geometrical Structures for Classical and Quantum Probability Spaces

    Full text link
    On the affine space containing the space S\mathcal{S} of quantum states of finite-dimensional systems there are contravariant tensor fields by means of which it is possible to define Hamiltonian and gradient vector fields encoding relevant geometrical properties of S\mathcal{S}. Guided by Dirac's analogy principle, we will use them as inspiration to define contravariant tensor fields, Hamiltonian and gradient vector fields on the affine space containing the space of fair probability distributions on a finite sample space and analyse their geometrical properties. Most of our considerations will be dealt with for the simple example of a three-level system.Comment: 16 page
    corecore