203 research outputs found

    Kernel Andorra Prolog and its computation model

    Get PDF
    The logic programming language framework Kernel Andorra Prolog is defined by a formal computation model. In Kernel Andorra Prolog, general combinations of concurrent reactive languages and nondeterministic transformational languages may be specified. The framework is based on constraints

    A Design and Implementation of the Extended Andorra Model

    Full text link
    Logic programming provides a high-level view of programming, giving implementers a vast latitude into what techniques to explore to achieve the best performance for logic programs. Towards obtaining maximum performance, one of the holy grails of logic programming has been to design computational models that could be executed efficiently and that would allow both for a reduction of the search space and for exploiting all the available parallelism in the application. These goals have motivated the design of the Extended Andorra Model, a model where goals that do not constrain non-deterministic goals can execute first. In this work we present and evaluate the Basic design for Extended Andorra Model (BEAM), a system that builds upon David H. D. Warren's original EAM with Implicit Control. We provide a complete description and implementation of the BEAM System as a set of rewrite and control rules. We present the major data structures and execution algorithms that are required for efficient execution, and evaluate system performance. A detailed performance study of our system is included. Our results show that the system achieves acceptable base performance, and that a number of applications benefit from the advanced search inherent to the EAM.Comment: 43 pages, To appear in Theory and Practice of Logic Programming (TPLP

    An automatic translation scheme from prolog to the andorra kernel language

    Full text link
    The Andorra family of languages (which includes the Andorra Kernel Language -AKL) is aimed, in principie, at simultaneously supporting the programming styles of Prolog and committed choice languages. On the other hand, AKL requires a somewhat detailed specification of control by the user. This could be avoided by programming in Prolog to run on AKL. However, Prolog programs cannot be executed directly on AKL. This is due to a number of factors, from more or less trivial syntactic differences to more involved issues such as the treatment of cut and making the exploitation of certain types of parallelism possible. This paper provides basic guidelines for constructing an automatic compiler of Prolog programs into AKL, which can bridge those differences. In addition to supporting Prolog, our style of translation achieves independent and-parallel execution where possible, which is relevant since this type of parallel execution preserves, through the translation, the user-perceived "complexity" of the original Prolog program

    Structural operational semantics for Kernel Andorra Prolog

    Get PDF
    Kernel Andorra Prolog is a framework for nondeterministic concurrent constraint logic programming languages. Many languages, such as Prolog, GHC, Parlog, and Atomic Herbrand, can be seen as instances of this framework, by adding specific constraint systems and constraint operations, and optionally by imposing further restrictions on the language and the control of the computation model. We systematically revisit the description in Haridi and Jarison [HJ90], adding the formal machinery which is necessary in order to completely formalize the control of the computation model. To this we add a formal description of the transformational semantics of Kernel Andorra Prolog. The semantics of Kernel Andorra Prolog is a set of or-trees which also captures infinite computations

    An automatic translation scheme from CLP to AKL

    Get PDF
    The Andorra Kernel language scheme was aimed, in principle, at simultaneously supporting the programming styles of Prolog and committed choice languages. Within the constraint programming paradigm, this family of languages could also in principle support the concurrent constraint paradigm. This happens for the Agents Kernel Language (AKL). On the other hand, AKL requires a somewhat detailed specification of control by the user. This could be avoided by programming in CLP to run on AKL. However, CLP programs cannot be executed directly on AKL. This is due to a number of factors, from more or less trivial syntactic differences to more involved issues such as the treatment of cut and making the exploitation of certain types of parallelism possible. This paper provides a translation scheme which is a basis of an automatic compiler of CLP programs into AKL, which can bridge those differences. In addition to supporting CLP, our style of translation achieves independent and-parallel execution where possible, which is relevant since this type of parallel execution preserves, through the translation, the user-perceived "complexity" of the original program

    Divided we stand: Parallel distributed stack memory management

    Get PDF
    We present an overview of the stack-based memory management techniques that we used in our non-deterministic and-parallel Prolog systems: &-Prolog and DASWAM. We believe that the problems associated with non-deterministic and-parallel systems are more general than those encountered in or-parallel and deterministic and-parallel systems, which can be seen as subsets of this more general case. We develop on the previously proposed "marker scheme", lifting some of the restrictions associated with the selection of goals while keeping (virtual) memory consumption down. We also review some of the other problems associated with the stack-based management scheme, such as handling of forward and backward execution, cut, and roll-backs

    An abstract model for parallel execution of prolog

    Get PDF
    Logic programming has been used in a broad range of fields, from artifficial intelligence applications to general purpose applications, with great success. Through its declarative semantics, by making use of logical conjunctions and disjunctions, logic programming languages present two types of implicit parallelism: and-parallelism and or-parallelism. This thesis focuses mainly in Prolog as a logic programming language, bringing out an abstract model for parallel execution of Prolog programs, leveraging the Extended Andorra Model (EAM) proposed by David H.D. Warren, which exploits the implicit parallelism in the programming language. A meta-compiler implementation for an intermediate language for the proposed model is also presented. This work also presents a survey on the state of the art relating to implemented Prolog compilers, either sequential or parallel, along with a walk-through of the current parallel programming frameworks. The main used model for Prolog compiler implementation, the Warren Abstract Machine (WAM) is also analyzed, as well as the WAM’s successor for supporting parallelism, the EAM; Sumário: Um Modelo Abstracto para Execução Paralela de Prolog A programação em lógica tem sido utilizada em diversas áreas, desde aplicações de inteligência artificial até aplicações de uso genérico, com grande sucesso. Pela sua semântica declarativa, fazendo uso de conjunções e disjunções lógicas, as linguagens de programação em lógica possuem dois tipos de paralelismo implícito: ou-paralelismo e e-paralelismo. Esta tese foca-se em particular no Prolog como linguagem de programação em lógica, apresentando um modelo abstracto para a execução paralela de programas em Prolog, partindo do Extended Andorra Model (EAM) proposto por David H.D. Warren, que tira partido do paralelismo implícito na linguagem. É apresentada uma implementação de um meta-compilador para uma linguagem intermédia para o modelo proposto. É feita uma revisão sobre o estado da arte em termos de implementações sequenciais e paralelas de compiladores de Prolog, em conjunto com uma visita pelas linguagens para implementação de sistemas paralelos. É feita uma análise ao modelo principal para implementação de compiladores de Prolog, a Warren Abstract Machine (WAM) e da sua evolução para suportar paralelismo, a EAM

    Structural operational semantics for Kernel Andorra Prolog

    Full text link
    • …
    corecore