52 research outputs found

    Influence-Optimistic Local Values for Multiagent Planning --- Extended Version

    Get PDF
    Recent years have seen the development of methods for multiagent planning under uncertainty that scale to tens or even hundreds of agents. However, most of these methods either make restrictive assumptions on the problem domain, or provide approximate solutions without any guarantees on quality. Methods in the former category typically build on heuristic search using upper bounds on the value function. Unfortunately, no techniques exist to compute such upper bounds for problems with non-factored value functions. To allow for meaningful benchmarking through measurable quality guarantees on a very general class of problems, this paper introduces a family of influence-optimistic upper bounds for factored decentralized partially observable Markov decision processes (Dec-POMDPs) that do not have factored value functions. Intuitively, we derive bounds on very large multiagent planning problems by subdividing them in sub-problems, and at each of these sub-problems making optimistic assumptions with respect to the influence that will be exerted by the rest of the system. We numerically compare the different upper bounds and demonstrate how we can achieve a non-trivial guarantee that a heuristic solution for problems with hundreds of agents is close to optimal. Furthermore, we provide evidence that the upper bounds may improve the effectiveness of heuristic influence search, and discuss further potential applications to multiagent planning.Comment: Long version of IJCAI 2015 paper (and extended abstract at AAMAS 2015

    Improving Policies via Search in Cooperative Partially Observable Games

    Full text link
    Recent superhuman results in games have largely been achieved in a variety of zero-sum settings, such as Go and Poker, in which agents need to compete against others. However, just like humans, real-world AI systems have to coordinate and communicate with other agents in cooperative partially observable environments as well. These settings commonly require participants to both interpret the actions of others and to act in a way that is informative when being interpreted. Those abilities are typically summarized as theory f mind and are seen as crucial for social interactions. In this paper we propose two different search techniques that can be applied to improve an arbitrary agreed-upon policy in a cooperative partially observable game. The first one, single-agent search, effectively converts the problem into a single agent setting by making all but one of the agents play according to the agreed-upon policy. In contrast, in multi-agent search all agents carry out the same common-knowledge search procedure whenever doing so is computationally feasible, and fall back to playing according to the agreed-upon policy otherwise. We prove that these search procedures are theoretically guaranteed to at least maintain the original performance of the agreed-upon policy (up to a bounded approximation error). In the benchmark challenge problem of Hanabi, our search technique greatly improves the performance of every agent we tested and when applied to a policy trained using RL achieves a new state-of-the-art score of 24.61 / 25 in the game, compared to a previous-best of 24.08 / 25

    Apprendre Ă  agir dans un Dec-POMDP

    Get PDF
    We address a long-standing open problem of reinforcement learning in decentralized partiallyobservable Markov decision processes. Previous attempts focussed on different forms of generalized policyiteration, which at best led to local optima. In this paper, we restrict attention to plans, which are simplerto store and update than policies. We derive, under certain conditions, the first near-optimal cooperativemulti-agent reinforcement learning algorithm. To achieve significant scalability gains, we replace the greedymaximization by mixed-integer linear programming. Experiments show our approach can learn to actnear-optimally in many finite domains from the literature

    Optimally Solving Two-Agent Decentralized POMDPs Under One-Sided Information Sharing

    Get PDF
    International audienceOptimally solving decentralized partially observable Markov decision processes (Dec-POMDPs) under either full or no information sharing received significant attention in recent years. However, little is known about how partial information sharing affects existing theory and algorithms. This paper addresses this question for a team of two agents, with one-sided information sharing, i.e. both agents have imperfect information about the state of the world, but only one has access to what the other sees and does. From the perspective of a central planner, we show that the original problem can be reformulated into an equivalent information-state Markov decision process and solved as such. Besides, we prove that the optimal value function exhibits a specific form of uniform continuity. We also present heuristic search algorithms utilizing this property and providing the first results for this family of problems
    • …
    corecore