1,075 research outputs found

    Modeling Brain Circuitry over a Wide Range of Scales

    Get PDF
    If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM) can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM) see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important. In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation

    Coronary Artery Centerline Extraction in Cardiac CT Angiography Using a CNN-Based Orientation Classifier

    Full text link
    Coronary artery centerline extraction in cardiac CT angiography (CCTA) images is a prerequisite for evaluation of stenoses and atherosclerotic plaque. We propose an algorithm that extracts coronary artery centerlines in CCTA using a convolutional neural network (CNN). A 3D dilated CNN is trained to predict the most likely direction and radius of an artery at any given point in a CCTA image based on a local image patch. Starting from a single seed point placed manually or automatically anywhere in a coronary artery, a tracker follows the vessel centerline in two directions using the predictions of the CNN. Tracking is terminated when no direction can be identified with high certainty. The CNN was trained using 32 manually annotated centerlines in a training set consisting of 8 CCTA images provided in the MICCAI 2008 Coronary Artery Tracking Challenge (CAT08). Evaluation using 24 test images of the CAT08 challenge showed that extracted centerlines had an average overlap of 93.7% with 96 manually annotated reference centerlines. Extracted centerline points were highly accurate, with an average distance of 0.21 mm to reference centerline points. In a second test set consisting of 50 CCTA scans, 5,448 markers in the coronary arteries were used as seed points to extract single centerlines. This showed strong correspondence between extracted centerlines and manually placed markers. In a third test set containing 36 CCTA scans, fully automatic seeding and centerline extraction led to extraction of on average 92% of clinically relevant coronary artery segments. The proposed method is able to accurately and efficiently determine the direction and radius of coronary arteries. The method can be trained with limited training data, and once trained allows fast automatic or interactive extraction of coronary artery trees from CCTA images.Comment: Accepted in Medical Image Analysi

    Using Artificial Intelligence for COVID-19 Detection in Blood Exams: A Comparative Analysis

    Get PDF
    COVID-19 is an infectious disease that was declared a pandemic by the World Health Organization (WHO) in early March 2020. Since its early development, it has challenged health systems around the world. Although more than 12 billion vaccines have been administered, at the time of writing, it has more than 623 million confirmed cases and more than 6 million deaths reported to the WHO. These numbers continue to grow, soliciting further research efforts to reduce the impacts of such a pandemic. In particular, artificial intelligence techniques have shown great potential in supporting the early diagnosis, detection, and monitoring of COVID-19 infections from disparate data sources. In this work, we aim to make a contribution to this field by analyzing a high-dimensional dataset containing blood sample data from over forty thousand individuals recognized as infected or not with COVID-19. Encompassing a wide range of methods, including traditional machine learning algorithms, dimensionality reduction techniques, and deep learning strategies, our analysis investigates the performance of different classification models, showing that accurate detection of blood infections can be obtained. In particular, an F-score of 84% was achieved by the artificial neural network model we designed for this task, with a rate of 87% correct predictions on the positive class. Furthermore, our study shows that the dimensionality of the original data, i.e. the number of features involved, can be significantly reduced to gain efficiency without compromising the final prediction performance. These results pave the way for further research in this field, confirming that artificial intelligence techniques may play an important role in supporting medical decision-making

    Reasoning with Uncertainty in Deep Learning for Safer Medical Image Computing

    Get PDF
    Deep learning is now ubiquitous in the research field of medical image computing. As such technologies progress towards clinical translation, the question of safety becomes critical. Once deployed, machine learning systems unavoidably face situations where the correct decision or prediction is ambiguous. However, the current methods disproportionately rely on deterministic algorithms, lacking a mechanism to represent and manipulate uncertainty. In safety-critical applications such as medical imaging, reasoning under uncertainty is crucial for developing a reliable decision making system. Probabilistic machine learning provides a natural framework to quantify the degree of uncertainty over different variables of interest, be it the prediction, the model parameters and structures, or the underlying data (images and labels). Probability distributions are used to represent all the uncertain unobserved quantities in a model and how they relate to the data, and probability theory is used as a language to compute and manipulate these distributions. In this thesis, we explore probabilistic modelling as a framework to integrate uncertainty information into deep learning models, and demonstrate its utility in various high-dimensional medical imaging applications. In the process, we make several fundamental enhancements to current methods. We categorise our contributions into three groups according to the types of uncertainties being modelled: (i) predictive; (ii) structural and (iii) human uncertainty. Firstly, we discuss the importance of quantifying predictive uncertainty and understanding its sources for developing a risk-averse and transparent medical image enhancement application. We demonstrate how a measure of predictive uncertainty can be used as a proxy for the predictive accuracy in the absence of ground-truths. Furthermore, assuming the structure of the model is flexible enough for the task, we introduce a way to decompose the predictive uncertainty into its orthogonal sources i.e. aleatoric and parameter uncertainty. We show the potential utility of such decoupling in providing a quantitative “explanations” into the model performance. Secondly, we introduce our recent attempts at learning model structures directly from data. One work proposes a method based on variational inference to learn a posterior distribution over connectivity structures within a neural network architecture for multi-task learning, and share some preliminary results in the MR-only radiotherapy planning application. Another work explores how the training algorithm of decision trees could be extended to grow the architecture of a neural network to adapt to the given availability of data and the complexity of the task. Lastly, we develop methods to model the “measurement noise” (e.g., biases and skill levels) of human annotators, and integrate this information into the learning process of the neural network classifier. In particular, we show that explicitly modelling the uncertainty involved in the annotation process not only leads to an improvement in robustness to label noise, but also yields useful insights into the patterns of errors that characterise individual experts

    Incorporating Deep Learning Techniques into Outcome Modeling in Non-Small Cell Lung Cancer Patients after Radiation Therapy

    Full text link
    Radiation therapy (radiotherapy) together with surgery, chemotherapy, and immunotherapy are common modalities in cancer treatment. In radiotherapy, patients are given high doses of ionizing radiation which is aimed at killing cancer cells and shrinking tumors. Conventional radiotherapy usually gives a standard prescription to all the patients, however, as patients are likely to have heterogeneous responses to the treatment due to multiple prognostic factors, personalization of radiotherapy treatment is desirable. Outcome models can serve as clinical decision-making support tools in the personalized treatment, helping evaluate patients’ treatment options before the treatment or during fractionated treatment. It can further provide insights into designing of new clinical protocols. In the outcome modeling, two indices including tumor control probability (TCP) and normal tissue complication probability (NTCP) are usually investigated. Current outcome models, e.g., analytical models and data-driven models, either fail to take into account complex interactions between physical and biological variables or require complicated feature selection procedures. Therefore, in our studies, deep learning (DL) techniques are incorporated into outcome modeling for prediction of local control (LC), which is TCP in our case, and radiation pneumonitis (RP), which is NTCP in our case, in non-small-cell lung cancer (NSCLC) patients after radiotherapy. These techniques can improve the prediction performance of outcomes and simplify model development procedures. Additionally, longitudinal data association, actuarial prediction, and multi-endpoints prediction are considered in our models. These were carried out in 3 consecutive studies. In the first study, a composite architecture consisting of variational auto-encoder (VAE) and multi-layer perceptron (MLP) was investigated and applied to RP prediction. The architecture enabled the simultaneous dimensionality reduction and prediction. The novel VAE-MLP joint architecture with area under receiver operative characteristics (ROC) curve (AUC) [95% CIs] 0.781 [0.737-0.808] outperformed a strategy which involves separate VAEs and classifiers (AUC 0.624 [ 0.577-0.658]). In the second study, composite architectures consisted of 1D convolutional layer/ locally-connected layer and MLP that took into account longitudinal associations were applied to predict LC. Composite architectures convolutional neural network (CNN)-MLP that can model both longitudinal and non-longitudinal data yielded an AUC 0.832 [ 0.807-0.841]. While plain MLP only yielded an AUC 0.785 [CI: 0.752-0.792] in LC control prediction. In the third study, rather than binary classification, time-to-event information was also incorporated for actuarial prediction. DL architectures ADNN-DVH which consider dosimetric information, ADNN-com which further combined biological and imaging data, and ADNN-com-joint which realized multi-endpoints prediction were investigated. Analytical models were also conducted for comparison purposes. Among all the models, ADNN-com-joint performed the best, yielding c-indexes of 0.705 [0.676-0.734] for RP2, 0.740 [0.714-0.765] for LC and an AU-FROC 0.720 [0.671-0.801] for joint prediction. The performance of proposed models was also tested on a cohort of newly-treated patients and multi-institutional RTOG0617 datasets. These studies taken together indicate that DL techniques can be utilized to improve the performance of outcome models and potentially provide guidance to physicians during decision making. Specifically, a VAE-MLP joint architectures can realize simultaneous dimensionality reduction and prediction, boosting the performance of conventional outcome models. A 1D CNN-MLP joint architecture can utilize temporal-associated variables generated during the span of radiotherapy. A DL model ADNN-com-joint can realize multi-endpoint prediction, which allows considering competing risk factors. All of those contribute to a step toward enabling outcome models as real clinical decision support tools.PHDApplied PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162923/1/sunan_1.pd

    Accurate Segmentation of CT Pelvic Organs via Incremental Cascade Learning and Regression-based Deformable Models

    Get PDF
    Accurate segmentation of male pelvic organs from computed tomography (CT) images is important in image guided radiotherapy (IGRT) of prostate cancer. The efficacy of radiation treatment highly depends on the segmentation accuracy of planning and treatment CT images. Clinically manual delineation is still generally performed in most hospitals. However, it is time consuming and suffers large inter-operator variability due to the low tissue contrast of CT images. To reduce the manual efforts and improve the consistency of segmentation, it is desirable to develop an automatic method for rapid and accurate segmentation of pelvic organs from planning and treatment CT images. This dissertation marries machine learning and medical image analysis for addressing two fundamental yet challenging segmentation problems in image guided radiotherapy of prostate cancer. Planning-CT Segmentation. Deformable models are popular methods for planning-CT segmentation. However, they are well known to be sensitive to initialization and ineffective in segmenting organs with complex shapes. To address these limitations, this dissertation investigates a novel deformable model named regression-based deformable model (RDM). Instead of locally deforming the shape model, in RDM the deformation at each model point is explicitly estimated from local image appearance and used to guide deformable segmentation. As the estimated deformation can be long-distance and is spatially adaptive to each model point, RDM is insensitive to initialization and more flexible than conventional deformable models. These properties render it very suitable for CT pelvic organ segmentation, where initialization is difficult to get and organs may have complex shapes. Treatment-CT Segmentation. Most existing methods have two limitations when they are applied to treatment-CT segmentation. First, they have a limited accuracy because they overlook the availability of patient-specific data in the IGRT workflow. Second, they are time consuming and may take minutes or even longer for segmentation. To improve both accuracy and efficiency, this dissertation combines incremental learning with anatomical landmark detection for fast localization of the prostate in treatment CT images. Specifically, cascade classifiers are learned from a population to automatically detect several anatomical landmarks in the image. Based on these landmarks, the prostate is quickly localized by aligning and then fusing previous segmented prostate shapes of the same patient. To improve the performance of landmark detection, a novel learning scheme named "incremental learning with selective memory" is proposed to personalize the population-based cascade classifiers to the patient under treatment. Extensive experiments on a large dataset show that the proposed method achieves comparable accuracy to the state of the art methods while substantially reducing runtime from minutes to just 4 seconds.Doctor of Philosoph

    Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019

    Get PDF
    Unmanned aerial vehicles (UAVs) are new platforms that have been increasingly used in the last few years for forestry applications that benefit from the added value of flexibility, low cost, reliability, autonomy, and capability of timely provision of high-resolution data. The main adopted image-based technologies are RGB, multispectral, and thermal infrared. LiDAR sensors are becoming commonly used to improve the estimation of relevant plant traits. In comparison with other permanent ecosystems, forests are particularly affected by climatic changes due to the longevity of the trees, and the primary objective is the conservation and protection of forests. Nevertheless, forestry and agriculture involve the cultivation of renewable raw materials, with the difference that forestry is less tied to economic aspects and this is reflected by the delay in using new monitoring technologies. The main forestry applications are aimed toward inventory of resources, map diseases, species classification, fire monitoring, and spatial gap estimation. This Special Issue focuses on new technologies (UAV and sensors) and innovative data elaboration methodologies (object recognition and machine vision) for applications in forestry

    Worksite data analysis using cloud services for machine learning

    Get PDF
    This thesis studies utilizing machine learning in cloud services. The aim of the thesis was to create a machine learning pipeline in a cloud service platform and use the pipeline to test how well worksite data could be used for machine learning. The data was operational data already existing in a database, and the test done was predicting a worksite’s time of completion based on its state and history using different machine learning models. The pipeline was built in Amazon Web Services, and consisted mainly of the services Glue and SageMaker. Glue was used to transform the data into a format readable by machine learning models, and SageMaker was used to implement the machine learning models. Amazon Web Services had a ways of creating all the needed parts of the pipeline, and the amount of boilerplate code was minimal. The implementation was sufficiently easy with no large setbacks. The machine learning models implemented were linear regression, random forest, XGBoost, and artificial neural network. The model performance results show that the best model for this problem is a two-hidden-layer artificial neural network, but the results vary drastically by the method the whole data set is split into training and test data.Tässä työssä tutkitaan koneoppimispalvelujen käyttöä pilvipalvelualustalla. Työn tavoitteena oli rakentaa pilvipalvelualustalle dataputki, jolla voidaan rakentaa käyttökelpoisia koneoppimismalleja käyttäen operationaalista työmaadataa olemassaolevasta tietokannasta. Datan soveltuvuutta koneoppimistarkoituksiin mitattiin ennustamalla työmaan valmistumisaikaa sen nykytilan ja historian perusteella käyttäen erilaisia koneoppimismalleja. Dataputki rakennettiin Amazon Web Services -pilvipalvelussa, ja koostui pääosin Glue- ja SageMaker-palveluista. Glue:a käytettiin operationaalisen datan muuntamiseen koneoppimismallien lukemaan muotoon, ja SageMaker:ia rakentamaan mallit. AmazonWeb Services -alusta sisälsi tarvittavat palvelut putken rakentamiseen, eikä ylimääräistä itse putkeen liittyvä koodia tarvinnut kirjoittaa juurikaan. Putki oli helppo toteuttaa, eikä suuria vaikeuksia tullut vastaan. Koneoppimismallit, joilla dataa testattiin olivat lineaarinen regressio, random forest, XGBoost sekä neuroverkko. Tulokset näyttävät, että paras malli tähän ongelmaan on kahden piilotetun kerroksen neuroverkko, mutta tarkkuuteen vaikuttaa huomattavasti tapa, jolla koko data puolitetaan opetus- ja testidataan
    corecore