253 research outputs found

    Optimal Sparse Decision Trees

    Full text link
    Decision tree algorithms have been among the most popular algorithms for interpretable (transparent) machine learning since the early 1980's. The problem that has plagued decision tree algorithms since their inception is their lack of optimality, or lack of guarantees of closeness to optimality: decision tree algorithms are often greedy or myopic, and sometimes produce unquestionably suboptimal models. Hardness of decision tree optimization is both a theoretical and practical obstacle, and even careful mathematical programming approaches have not been able to solve these problems efficiently. This work introduces the first practical algorithm for optimal decision trees for binary variables. The algorithm is a co-design of analytical bounds that reduce the search space and modern systems techniques, including data structures and a custom bit-vector library. Our experiments highlight advantages in scalability, speed, and proof of optimality.Comment: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canad

    Introduction in IND and recursive partitioning

    Get PDF
    This manual describes the IND package for learning tree classifiers from data. The package is an integrated C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian variations. The package includes routines for experiment control, interactive operation, and analysis of tree building. The manual introduces the system and its many options, gives a basic review of tree learning, contains a guide to the literature and a glossary, and lists the manual pages for the routines and instructions on installation

    Value-Function Approximations for Partially Observable Markov Decision Processes

    Full text link
    Partially observable Markov decision processes (POMDPs) provide an elegant mathematical framework for modeling complex decision and planning problems in stochastic domains in which states of the system are observable only indirectly, via a set of imperfect or noisy observations. The modeling advantage of POMDPs, however, comes at a price -- exact methods for solving them are computationally very expensive and thus applicable in practice only to very simple problems. We focus on efficient approximation (heuristic) methods that attempt to alleviate the computational problem and trade off accuracy for speed. We have two objectives here. First, we survey various approximation methods, analyze their properties and relations and provide some new insights into their differences. Second, we present a number of new approximation methods and novel refinements of existing techniques. The theoretical results are supported by experiments on a problem from the agent navigation domain

    Reducing Nondeterministic Tree Automata by Adding Transitions

    Get PDF
    We introduce saturation of nondeterministic tree automata, a technique that consists of adding new transitions to an automaton while preserving its language. We implemented our algorithm on minotaut - a module of the tree automata library libvata that reduces the size of automata by merging states and removing superfluous transitions - and we show how saturation can make subsequent merge and transition-removal operations more effective. Thus we obtain a Ptime algorithm that reduces the size of tree automata even more than before. Additionally, we explore how minotaut alone can play an important role when performing hard operations like complementation, allowing to both obtain smaller complement automata and lower computation times. We then show how saturation can extend this contribution even further. We tested our algorithms on a large collection of automata from applications of libvata in shape analysis, and on different classes of randomly generated automata.Comment: In Proceedings MEMICS 2016, arXiv:1612.0403

    Planning under time pressure

    Get PDF
    Heuristic search is a technique used pervasively in artificial intelligence and automated planning. Often an agent is given a task that it would like to solve as quickly as possible. It must allocate its time between planning the actions to achieve the task and actually executing them. We call this problem planning under time pressure. Most popular heuristic search algorithms are ill-suited for this setting, as they either search a lot to find short plans or search a little and find long plans. The thesis of this dissertation is: when under time pressure, an automated agent should explicitly attempt to minimize the sum of planning and execution times, not just one or just the other. This dissertation makes four contributions. First we present new algorithms that use modern multi-core CPUs to decrease planning time without increasing execution. Second, we introduce a new model for predicting the performance of iterative-deepening search. The model is as accurate as previous offline techniques when using less training data, but can also be used online to reduce the overhead of iterative-deepening search, resulting in faster planning. Third we show offline planning algorithms that directly attempt to minimize the sum of planning and execution times. And, fourth we consider algorithms that plan online in parallel with execution. Both offline and online algorithms account for a user-specified preference between search and execution, and can greatly outperform the standard utility-oblivious techniques. By addressing the problem of planning under time pressure, these contributions demonstrate that heuristic search is no longer restricted to optimizing solution cost, obviating the need to choose between slow search times and expensive solutions

    Introduction to IND and recursive partitioning, version 1.0

    Get PDF
    This manual describes the IND package for learning tree classifiers from data. The package is an integrated C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian variations. The package includes routines for experiment control, interactive operation, and analysis of tree building. The manual introduces the system and its many options, gives a basic review of tree learning, contains a guide to the literature and a glossary, lists the manual pages for the routines, and instructions on installation

    Fast speaker independent large vocabulary continuous speech recognition [online]

    Get PDF
    corecore