164 research outputs found

    Pruning dominated policies in multiobjective Pareto Q-learning

    Get PDF
    The solution for a Multi-Objetive Reinforcement Learning problem is a set of Pareto optimal policies. MPQ-learning is a recent algorithm that approximates the whole set of all Pareto-optimal deterministic policies by directly generalizing Q-learning to the multiobjective setting. In this paper we present a modification of MPQ-learning that avoids useless cyclical policies and thus improves the number of training steps required for convergence.Supported by: the Spanish Government, Agencia Estatal de Investigaci´on (AEI) and European Union, Fondo Europeo de Desarrollo Regional (FEDER), grant TIN2016-80774-R (AEI/FEDER, UE); and Plan Propio de Investigación de la Universidad de Málaga - Campus de Excelencia Internacional Andalucía Tech

    Distributional Multi-Objective Decision Making

    Full text link
    For effective decision support in scenarios with conflicting objectives, sets of potentially optimal solutions can be presented to the decision maker. We explore both what policies these sets should contain and how such sets can be computed efficiently. With this in mind, we take a distributional approach and introduce a novel dominance criterion relating return distributions of policies directly. Based on this criterion, we present the distributional undominated set and show that it contains optimal policies otherwise ignored by the Pareto front. In addition, we propose the convex distributional undominated set and prove that it comprises all policies that maximise expected utility for multivariate risk-averse decision makers. We propose a novel algorithm to learn the distributional undominated set and further contribute pruning operators to reduce the set to the convex distributional undominated set. Through experiments, we demonstrate the feasibility and effectiveness of these methods, making this a valuable new approach for decision support in real-world problems.Comment: Accepted at IJCAI 202

    Computing Convex Coverage Sets for Faster Multi-objective Coordination

    Get PDF
    In this article, we propose new algorithms for multi-objective coordination graphs (MO- CoGs). Key to the efficiency of these algorithms is that they compute a convex coverage set (CCS) instead of a Pareto coverage set (PCS). Not only is a CCS a sufficient solution set for a large class of problems, it also has important characteristics that facilitate more efficient solutions. We propose two main algorithms for computing a CCS in MO-CoGs. Convex multi-objective variable elimination (CMOVE) computes a CCS by performing a series of agent eliminations, which can be seen as solving a series of local multi-objective subproblems. Variable elimination linear support (VELS) iteratively identifies the single weight vector w that can lead to the maximal possible improvement on a partial CCS and calls variable elimination to solve a scalarized instance of the problem for w. VELS is faster than CMOVE for small and medium numbers of objectives and can compute an ε-approximate CCS in a fraction of the runtime. In addition, we propose variants of these methods that employ AND/OR tree search instead of variable elimination to achieve memory efficiency. We analyze the runtime and space complexities of these methods, prove their correctness, and compare them empirically against a naive baseline and an existing PCS method, both in terms of memory-usage and runtime. Our results show that, by focusing on the CCS, these methods achieve much better scalability in the number of agents than the current state of the art

    Faster Evolutionary Multi-Objective Optimization via GALE, the Geometric Active Learner

    Get PDF
    Goal optimization has long been a topic of great interest in computer science. The literature contains many thousands of papers that discuss methods for the search of optimal solutions to complex problems. In the case of multi-objective optimization, such a search yields iteratively improved approximations to the Pareto frontier, i.e. the set of best solutions contained along a trade-off curve of competing objectives.;To approximate the Pareto frontier, one method that is ubiquitous throughout the field of optimization is stochastic search. Stochastic search engines explore solution spaces by randomly mutating candidate guesses to generate new solutions. This mutation policy is employed by the most commonly used tools (e.g. NSGA-II, SPEA2, etc.), with the goal of a) avoiding local optima, and b) expand upon diversity in the set of generated approximations. Such blind mutation policies explore many sub-optimal solutions that are discarded when better solutions are found. Hence, this approach has two problems. Firstly, stochastic search can be unnecessarily computationally expensive due to evaluating an overwhelming number of candidates. Secondly, the generated approximations to the Pareto frontier are usually very large, and can be difficult to understand.;To solve these two problems, a more-directed, less-stochastic approach than standard search tools is necessary. This thesis presents GALE (Geometric Active Learning). GALE is an active learner that finds approximations to the Pareto frontier by spectrally clustering candidates using a near-linear time recursive descent algorithm that iteratively divides candidates into halves (called leaves at the bottom level). Active learning in GALE selects a minimally most-informative subset of candidates by only evaluating the two-most different candidates during each descending split; hence, GALE only requires at most, 2Log2(N) evaluations per generation. The candidates of each leaf are thereafter non-stochastically mutated in the most promising directions along each piece. Those leafs are piece-wise approximations to the Pareto frontier.;The experiments of this thesis lead to the following conclusion: a near-linear time recursive binary division of the decision space of candidates in a multi-objective optimization algorithm can find useful directions to mutate instances and find quality solutions much faster than traditional randomization approaches. Specifically, in comparative studies with standard methods (NSGA-II and SPEA2) applied to a variety of models, GALE required orders of magnitude fewer evaluations to find solutions. As a result, GALE can perform dramatically faster than the other methods, especially for realistic models

    Improving Computer Network Operations Through Automated Interpretation of State

    Get PDF
    Networked systems today are hyper-scaled entities that provide core functionality for distributed services and applications spanning personal, business, and government use. It is critical to maintain correct operation of these networks to avoid adverse business outcomes. The advent of programmable networks has provided much needed fine-grained network control, enabling providers and operators alike to build some innovative networking architectures and solutions. At the same time, they have given rise to new challenges in network management. These architectures, coupled with a multitude of devices, protocols, virtual overlays on top of physical data-plane etc. make network management a highly challenging task. Existing network management methodologies have not evolved at the same pace as the technologies and architectures. Current network management practices do not provide adequate solutions for highly dynamic, programmable environments. We have a long way to go in developing management methodologies that can meaningfully contribute to networks becoming self-healing entities. The goal of my research is to contribute to the design and development of networks towards transforming them into self-healing entities. Network management includes a multitude of tasks, not limited to diagnosis and troubleshooting, but also performance engineering and tuning, security analysis etc. This research explores novel methods of utilizing network state to enhance networking capabilities. It is constructed around hypotheses based on careful analysis of practical deficiencies in the field. I try to generate real-world impact with my research by tackling problems that are prevalent in deployed networks, and that bear practical relevance to the current state of networking. The overarching goal of this body of work is to examine various approaches that could help enhance network management paradigms, providing administrators with a better understanding of the underlying state of the network, thus leading to more informed decision-making. The research looks into two distinct areas of network management, troubleshooting and routing, presenting novel approaches to accomplishing certain goals in each of these areas, demonstrating that they can indeed enhance the network management experience

    Machine learning for network based intrusion detection: an investigation into discrepancies in findings with the KDD cup '99 data set and multi-objective evolution of neural network classifier ensembles from imbalanced data.

    Get PDF
    For the last decade it has become commonplace to evaluate machine learning techniques for network based intrusion detection on the KDD Cup '99 data set. This data set has served well to demonstrate that machine learning can be useful in intrusion detection. However, it has undergone some criticism in the literature, and it is out of date. Therefore, some researchers question the validity of the findings reported based on this data set. Furthermore, as identified in this thesis, there are also discrepancies in the findings reported in the literature. In some cases the results are contradictory. Consequently, it is difficult to analyse the current body of research to determine the value in the findings. This thesis reports on an empirical investigation to determine the underlying causes of the discrepancies. Several methodological factors, such as choice of data subset, validation method and data preprocessing, are identified and are found to affect the results significantly. These findings have also enabled a better interpretation of the current body of research. Furthermore, the criticisms in the literature are addressed and future use of the data set is discussed, which is important since researchers continue to use it due to a lack of better publicly available alternatives. Due to the nature of the intrusion detection domain, there is an extreme imbalance among the classes in the KDD Cup '99 data set, which poses a significant challenge to machine learning. In other domains, researchers have demonstrated that well known techniques such as Artificial Neural Networks (ANNs) and Decision Trees (DTs) often fail to learn the minor class(es) due to class imbalance. However, this has not been recognized as an issue in intrusion detection previously. This thesis reports on an empirical investigation that demonstrates that it is the class imbalance that causes the poor detection of some classes of intrusion reported in the literature. An alternative approach to training ANNs is proposed in this thesis, using Genetic Algorithms (GAs) to evolve the weights of the ANNs, referred to as an Evolutionary Neural Network (ENN). When employing evaluation functions that calculate the fitness proportionally to the instances of each class, thereby avoiding a bias towards the major class(es) in the data set, significantly improved true positive rates are obtained whilst maintaining a low false positive rate. These findings demonstrate that the issues of learning from imbalanced data are not due to limitations of the ANNs; rather the training algorithm. Moreover, the ENN is capable of detecting a class of intrusion that has been reported in the literature to be undetectable by ANNs. One limitation of the ENN is a lack of control of the classification trade-off the ANNs obtain. This is identified as a general issue with current approaches to creating classifiers. Striving to create a single best classifier that obtains the highest accuracy may give an unfruitful classification trade-off, which is demonstrated clearly in this thesis. Therefore, an extension of the ENN is proposed, using a Multi-Objective GA (MOGA), which treats the classification rate on each class as a separate objective. This approach produces a Pareto front of non-dominated solutions that exhibit different classification trade-offs, from which the user can select one with the desired properties. The multi-objective approach is also utilised to evolve classifier ensembles, which yields an improved Pareto front of solutions. Furthermore, the selection of classifier members for the ensembles is investigated, demonstrating how this affects the performance of the resultant ensembles. This is a key to explaining why some classifier combinations fail to give fruitful solutions

    Temporal Information in Data Science: An Integrated Framework and its Applications

    Get PDF
    Data science is a well-known buzzword, that is in fact composed of two distinct keywords, i.e., data and science. Data itself is of great importance: each analysis task begins from a set of examples. Based on such a consideration, the present work starts with the analysis of a real case scenario, by considering the development of a data warehouse-based decision support system for an Italian contact center company. Then, relying on the information collected in the developed system, a set of machine learning-based analysis tasks have been developed to answer specific business questions, such as employee work anomaly detection and automatic call classification. Although such initial applications rely on already available algorithms, as we shall see, some clever analysis workflows had also to be developed. Afterwards, continuously driven by real data and real world applications, we turned ourselves to the question of how to handle temporal information within classical decision tree models. Our research brought us the development of J48SS, a decision tree induction algorithm based on Quinlan's C4.5 learner, which is capable of dealing with temporal (e.g., sequential and time series) as well as atemporal (such as numerical and categorical) data during the same execution cycle. The decision tree has been applied into some real world analysis tasks, proving its worthiness. A key characteristic of J48SS is its interpretability, an aspect that we specifically addressed through the study of an evolutionary-based decision tree pruning technique. Next, since a lot of work concerning the management of temporal information has already been done in automated reasoning and formal verification fields, a natural direction in which to proceed was that of investigating how such solutions may be combined with machine learning, following two main tracks. First, we show, through the development of an enriched decision tree capable of encoding temporal information by means of interval temporal logic formulas, how a machine learning algorithm can successfully exploit temporal logic to perform data analysis. Then, we focus on the opposite direction, i.e., that of employing machine learning techniques to generate temporal logic formulas, considering a natural language processing scenario. Finally, as a conclusive development, the architecture of a system is proposed, in which formal methods and machine learning techniques are seamlessly combined to perform anomaly detection and predictive maintenance tasks. Such an integration represents an original, thrilling research direction that may open up new ways of dealing with complex, real-world problems.Data science is a well-known buzzword, that is in fact composed of two distinct keywords, i.e., data and science. Data itself is of great importance: each analysis task begins from a set of examples. Based on such a consideration, the present work starts with the analysis of a real case scenario, by considering the development of a data warehouse-based decision support system for an Italian contact center company. Then, relying on the information collected in the developed system, a set of machine learning-based analysis tasks have been developed to answer specific business questions, such as employee work anomaly detection and automatic call classification. Although such initial applications rely on already available algorithms, as we shall see, some clever analysis workflows had also to be developed. Afterwards, continuously driven by real data and real world applications, we turned ourselves to the question of how to handle temporal information within classical decision tree models. Our research brought us the development of J48SS, a decision tree induction algorithm based on Quinlan's C4.5 learner, which is capable of dealing with temporal (e.g., sequential and time series) as well as atemporal (such as numerical and categorical) data during the same execution cycle. The decision tree has been applied into some real world analysis tasks, proving its worthiness. A key characteristic of J48SS is its interpretability, an aspect that we specifically addressed through the study of an evolutionary-based decision tree pruning technique. Next, since a lot of work concerning the management of temporal information has already been done in automated reasoning and formal verification fields, a natural direction in which to proceed was that of investigating how such solutions may be combined with machine learning, following two main tracks. First, we show, through the development of an enriched decision tree capable of encoding temporal information by means of interval temporal logic formulas, how a machine learning algorithm can successfully exploit temporal logic to perform data analysis. Then, we focus on the opposite direction, i.e., that of employing machine learning techniques to generate temporal logic formulas, considering a natural language processing scenario. Finally, as a conclusive development, the architecture of a system is proposed, in which formal methods and machine learning techniques are seamlessly combined to perform anomaly detection and predictive maintenance tasks. Such an integration represents an original, thrilling research direction that may open up new ways of dealing with complex, real-world problems
    corecore