196 research outputs found

    Human-robot collaboration for surface treatment tasks

    Full text link
    [EN] This paper presents a human-robot closely collaborative solution to cooperatively perform surface treatment tasks such as polishing, grinding, finishing, deburring, etc. The proposed scheme is based on task priority and non-conventional sliding mode control. Furthermore, the proposal includes two force sensors attached to the manipulator end-effector and tool: one sensor is used to properly accomplish the surface treatment task, while the second one is used by the operator to guide the robot tool. The applicability and feasibility of the proposed collaborative solution for robotic surface treatment are substantiated by experimental results using a redundant 7R manipulator: the Sawyer collaborative robot.This work was supported in part by the Spanish Government under the project DPI-201787656-C2-1-R and the Generalitat Valenciana under Grant VALi+d.Gracia Calandin, LI.; Solanes Galbis, JE.; Muñoz-Benavent, P.; Valls Miro, J.; Perez-Vidal, C.; Tornero Montserrat, J. (2019). Human-robot collaboration for surface treatment tasks. Interaction Studies. 20(1):148-184. https://doi.org/10.1075/is.18010.graS148184201Angel-Fernandez, J. M., & Bonarini, A. (2016). Robots Showing Emotions. Interaction Studies / Social Behaviour and Communication in Biological and Artificial Systems, 17(3), 408-437. doi:10.1075/is.17.3.06angArnal, L., Solanes, J. E., Molina, J., & Tornero, J. (2017). Detecting dings and dents on specular car body surfaces based on optical flow. Journal of Manufacturing Systems, 45, 306-321. doi:10.1016/j.jmsy.2017.07.006Chiaverini, S., Oriolo, G., & Walker, I. D. (2008). Kinematically Redundant Manipulators. Springer Handbook of Robotics, 245-268. doi:10.1007/978-3-540-30301-5_12Dimeas, F., & Aspragathos, N. (2016). Online Stability in Human-Robot Cooperation with Admittance Control. IEEE Transactions on Haptics, 9(2), 267-278. doi:10.1109/toh.2016.2518670Edwards, C., & Spurgeon, S. (1998). Sliding Mode Control. doi:10.1201/9781498701822Engeberg, E. D., Meek, S. G., & Minor, M. A. (2008). Hybrid Force–Velocity Sliding Mode Control of a Prosthetic Hand. IEEE Transactions on Biomedical Engineering, 55(5), 1572-1581. doi:10.1109/tbme.2007.914672Etzioni, A., & Etzioni, O. (2017). The ethics of robotic caregivers. Interaction Studies / Social Behaviour and Communication in Biological and Artificial Systems, 18(2), 174-190. doi:10.1075/is.18.2.02etzDe Graaf, M. M. A., Ben Allouch, S., & van Dijk, J. A. G. M. (2016). Long-term evaluation of a social robot in real homes. Interaction Studies / Social Behaviour and Communication in Biological and Artificial Systems, 17(3), 461-490. doi:10.1075/is.17.3.08degJlassi, S., Tliba, S., & Chitour, Y. (2014). An event-controlled online trajectory generator based on the human-robot interaction force processing. Industrial Robot: An International Journal, 41(1), 15-25. doi:10.1108/ir-01-2013-317Khan, A. M., Yun, D., Zuhaib, K. M., Iqbal, J., Yan, R.-J., Khan, F., & Han, C. (2017). Estimation of Desired Motion Intention and compliance control for upper limb assist exoskeleton. International Journal of Control, Automation and Systems, 15(2), 802-814. doi:10.1007/s12555-015-0151-7Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 76(9-10), 924-941. doi:10.1080/0020717031000099029Levant, A. (2005). Quasi-continuous high-order sliding-mode controllers. IEEE Transactions on Automatic Control, 50(11), 1812-1816. doi:10.1109/tac.2005.858646Martínez, S. S., Ortega, J. G., García, J. G., García, A. S., & Estévez, E. E. (2013). An industrial vision system for surface quality inspection of transparent parts. The International Journal of Advanced Manufacturing Technology, 68(5-8), 1123-1136. doi:10.1007/s00170-013-4904-2Massoud, A. T., ElMaraghy, H. A., & Lahdhiri, T. (1999). Journal of Intelligent and Robotic Systems, 25(3), 227-254. doi:10.1023/a:1008099522350Mitra, A., & Behera, L. (2015). Development of a Fuzzy Sliding Mode Controller with adaptive tuning technique for a MRI guided robot in the human vasculature. 2015 IEEE 13th International Conference on Industrial Informatics (INDIN). doi:10.1109/indin.2015.7281763Molina, J., Solanes, J. E., Arnal, L., & Tornero, J. (2017). On the detection of defects on specular car body surfaces. Robotics and Computer-Integrated Manufacturing, 48, 263-278. doi:10.1016/j.rcim.2017.04.009Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-Priority Based Redundancy Control of Robot Manipulators. The International Journal of Robotics Research, 6(2), 3-15. doi:10.1177/027836498700600201Ortaç, G., Bilgi, A. S., Taşdemir, K., & Kalkan, H. (2016). A hyperspectral imaging based control system for quality assessment of dried figs. Computers and Electronics in Agriculture, 130, 38-47. doi:10.1016/j.compag.2016.10.001Papadopoulos, F., Küster, D., Corrigan, L. J., Kappas, A., & Castellano, G. (2016). Do relative positions and proxemics affect the engagement in a Human-Robot collaborative scenario? Interaction Studies / Social Behaviour and Communication in Biological and Artificial Systems, 17(3), 321-347. doi:10.1075/is.17.3.01papRoswell, A., Xi, F. (Jeff), & Liu, G. (2006). Modelling and analysis of contact stress for automated polishing. International Journal of Machine Tools and Manufacture, 46(3-4), 424-435. doi:10.1016/j.ijmachtools.2005.05.006Sakaino, S., & Ohnishi, K. (2006). Sliding Mode Control Based on Position Control for Contact Motion Applied to Hopping Robot. 2006 IEEE International Conference on Industrial Technology. doi:10.1109/icit.2006.372347Shi, Y., Zheng, D., Hu, L., Wang, Y., & Wang, L. (2011). NC polishing of aspheric surfaces under control of constant pressure using a magnetorheological torque servo. The International Journal of Advanced Manufacturing Technology, 58(9-12), 1061-1073. doi:10.1007/s00170-011-3445-9Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics. Advanced Textbooks in Control and Signal Processing. doi:10.1007/978-1-84628-642-1Tian, F., Li, Z., Lv, C., & Liu, G. (2016). Polishing pressure investigations of robot automatic polishing on curved surfaces. The International Journal of Advanced Manufacturing Technology, 87(1-4), 639-646. doi:10.1007/s00170-016-8527-2Tornero, J., Armesto, L., Mora, M. C., Monteś, N., Herráez, Á., & Asensio, J. (2012). Detección de Defectos en Carrocerías de Vehículos Basado en Visión Artificial: Diseño e Implantación. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(1), 93-104. doi:10.1016/j.riai.2011.11.010Utkin, V., Guldner, J., & Shi, J. (2017). Sliding Mode Control in Electro-Mechanical Systems. doi:10.1201/9781420065619Vlachos, E., Jochum, E., & Demers, L.-P. (2016). The Effects of Exposure to Different Social Robots on Attitudes toward Preferences. Interaction Studies / Social Behaviour and Communication in Biological and Artificial Systems, 17(3), 390-404. doi:10.1075/is.17.3.04vlaWu, Q., Wang, X., Du, F., & Zhu, Q. (2015). Fuzzy sliding mode control of an upper limb exoskeleton for robot-assisted rehabilitation. 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings. doi:10.1109/memea.2015.7145246Yun, D., Khan, A. M., Yan, R.-J., Ji, Y., Jang, H., Iqbal, J., … Han, C. (2016). Handling subject arm uncertainties for upper limb rehabilitation robot using robust sliding mode control. International Journal of Precision Engineering and Manufacturing, 17(3), 355-362. doi:10.1007/s12541-016-0044-6ZHOU, J., ZHOU, Z., & AI, Q. (2016). Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control. Mechanical Engineering and Control Systems. doi:10.1142/9789814740616_003

    Human-robot cooperation for robust surface treatment using non-conventional sliding mode control

    Full text link
    © 2018 ISA This work presents a human-robot closely collaborative solution to cooperatively perform surface treatment tasks such as polishing, grinding, deburring, etc. The method considers two force sensors attached to the manipulator end-effector and tool: one sensor is used to properly accomplish the surface treatment task, while the second one is used by the operator to guide the robot tool. The proposed scheme is based on task priority and adaptive non-conventional sliding mode control. The applicability of the proposed approach is substantiated by experimental results using a redundant 7R manipulator: the Sawyer cobot

    Human-robot cooperation for robust surface treatment using non-conventional sliding mode control

    Full text link
    [EN] This work presents a human-robot closely collaborative solution to cooperatively perform surface treatment tasks such as polishing, grinding, deburring, etc. The method considers two force sensors attached to the manipulator end-effector and tool: one sensor is used to properly accomplish the surface treatment task, while the second one is used by the operator to guide the robot tool. The proposed scheme is based on task priority and adaptive non-conventional sliding mode control. The applicability of the proposed approach is substantiated by experimental results using a redundant 7R manipulator: the Sawyer cobot.This work was supported in part by the Spanish Government under the project DPI2017-87656-C2-1-R and the Generalitat Valenciana under Grants VALi + d APOSTD/2016/044 and APOSTD/2017/055.Solanes Galbis, JE.; Gracia Calandin, LI.; Muñoz-Benavent, P.; Valls Miro, J.; Girbés, V.; Tornero Montserrat, J. (2018). Human-robot cooperation for robust surface treatment using non-conventional sliding mode control. ISA Transactions. 80(1):528-541. https://doi.org/10.1016/j.isatra.2018.05.013S52854180

    Co-exploring Actuator Antagonism and Bio-inspired Control in a Printable Robot Arm

    Get PDF
    The human arm is capable of performing fast targeted movements with high precision, say in pointing with a mouse cursor, but is inherently ‘soft’ due to the muscles, tendons and other tissues of which it is composed. Robot arms are also becoming softer, to enable robustness when operating in real-world environments, and to make them safer to use around people. But softness comes at a price, typically an increase in the complexity of the control required for a given task speed/accuracy requirement. Here we explore how fast and precise joint movements can be simply and effectively performed in a soft robot arm, by taking inspiration from the human arm. First, viscoelastic actuator-tendon systems in an agonist-antagonist setup provide joints with inherent damping, and stiffness that can be varied in real-time through co-contraction. Second, a light-weight and learnable inverse model for each joint enables a fast ballistic phase that drives the arm close to a desired equilibrium point and co-contraction tuple, while the final adjustment is done by a feedback controller. The approach is embodied in the GummiArm, a robot which can almost entirely be printed on hobby-grade 3D printers. This enables rapid and iterative co-exploration of ‘brain’ and ‘body’, and provides a great platform for developing adaptive and bio-inspired behaviours

    Nonlinear Control Strategies for Outdoor Aerial Manipulators

    Get PDF
    In this thesis, the design, validation and implementation of nonlinear control strategies for aerial manipulators {i.e. aerial robots equipped with manipulators{ is studied, with special emphasis on the internal coupling of the system and its resilience against external disturbances. For the rst, di erent decentralised control strategies {i.e. using di erent control typologies for each one of the subsystems{ that indirectly take into account this coupling have been analysed. As a result, a nonlinear strategy composed of two controllers is proposed. A higher priority is given to the manipulation accuracy, relaxing the platform tracking, and hence obtaining a solution improving the manipulation capabilities with the surrounding environment. To validate these results, thorough stability and robustness analyses are provided, both theoretically and in simulation. On the other hand, a signi cant e ort has been devoted to improving the response and applicability of robot manipulators used in ight via control. In particular, the design of controllers for lightweight exible manipulators {that reduce the consequences of incidents involving unforeseen contacts{ is analysed. Although their inherent nature perfectly ts for aerial manipulation applications, the added exibility produces unwanted behaviours, such as second-order modes and uncertainties. To cope with them, an adaptable position nonlinear control strategy is proposed. To validate this contribution, the stability of the approach is studied in theory and its capabilities are proven in several experimental scenarios. In these, the robustness of the solution against unforeseen impacts and contact with uncharacterised interfaces is demonstrated. Subsequently, this strategy has been enriched with {multiaxis{ force control capabilities thanks to the inclusion of an outer control loop modifying the manipulator reference. Accordingly, this additional applicationfocused capability is added to the controlled system without loosing the modulated response of the inner-loop position strategy. It is also worth noting that, thanks to the cascade-like nature of the modi cation, the transition between position and force control modes is inherently smooth and automatic. The stability of this expanded strategy has been theoretically analysed and the results validated in a set of experimental scenarios. To validate the rst nonlinear approach with realistic outdoor simulations before its implementation, a computational uid dynamics analysis has been performed to obtain an explicit model of the aerodynamic forces and torques applied to the blunt-body of the aerial platform in ight. The results of this study have been compared to the most common alternative nowadays, being highlighted that the proposed model signi cantly surpasses this option in terms of accuracy. Moreover, it is worth underscoring that this characterisation could be also employed in the future to develop control solutions with enhanced rejection capabilities against wind conditions. Finally, as the focus of this thesis is on the use of novel control strategies on real aerial manipulation outdoors to improve their accuracy while performing complex tasks, a modular autopilot solution to be able to implement them has been also developed. This general-purpose autopilot allows the implementation of new algorithms, and facilitates their theory-to-experimentation transition. Taking into account this perspective, the proposed tool employs the simple and widely-known MAS interface and the highly reliable PX4 autopilot as backup, thus providing a redundant approach to handle unexpected incidents in ight.En esta tesis se ha estudiado el diseño, validación e implementación de estrategias de control no lineales para robots manipuladores aéreos –esto es, robots aéreos equipados con un sistema de manipulación robótica–, dándose especial énfasis a las interacciones internas del sistema y a su resiliencia frente a efectos externos. Para lo primero, se han analizado diferentes estrategias de control descentralizado –es decir, que usan tipologías de control diferentes para cada uno de los subsistemas–, pero que tienen indirectamente en consideración la interacción entre manipulación y vuelo. Como resultado de esta línea, se propone una estretegia de control conformada por dos controladores. Estos se coordinan de tal forma que se le da prioridad a la manipulación sobre el seguimiento de posiciones del vehículo, produciéndose un sistema de control que mejora la precisión de las interacciones entre el sistema manipulador y el entorno. Para validar estos resultados, se ha analizado su estabilidad y robustez tanto teóricamente como mediante simulaciones numéricas. Por otro lado, se ha buscado mejorar la respuesta y aplicabilidad de los manipuladores que se usan en vuelo mediante su control. Dentro de esta tendencia, la tesis se ha centrado en el diseño de controladores para manipuladores ligeros flexibles, ya que estos permiten reducir el peso del sistema completo y reducen el riesgo de incidentes debidos a contactos inesperados. Sin embargo, la flexibilidad de estos produce comportamientos indeseados durante la operación, como la aparición de modos de segundo orden y cierta incentidumbre en su comportamiento. Para reducir su impacto en la precisión de las tareas de manipulación, se ha desarrollado un controlador no lineal adaptable. Para validar estos resultados, se ha analizado la estabilidad del sistema teóricamente y se han desarrollado una serie de experimentos. En ellos, se ha comprobado su robustez ante impactos inesperados y contactos con elementos no caracterizados. Posteriormente, esta estrategia para manipuladores flexibles ha sido ampliada al añadir un bucle externo que posibilita el control en fuerzas en varias direcciones. Esto permite, mediante un único controlador, mantener la suave respuesta de la estrategia. Además cabe destacar que, al contar esta estrategia con un diseño en cascade, la transición entre los segmentos de desplazamiento del brazo y de aplicación de fuerzas es fluida y automática. La estabilidad de esta estrategia ampliada ha sido analizada teóricamente y los resultados han sido validados experimentalmente. Para validar la primera estrategia mediante simulaciones que representen fielmente las condiciones en exteriores antes de su implementación, ha sido necesario realizar un estudio mediante mecánica de fluidos computacional para obtener un modelo explícito de las fuerzas y momentos aerodinámicos a los que se efrenta la plataforma en vuelo. Los resultados de este estudio han sido comparados con la alternativa más empleada actualmente, mostrándose que los avances del método propuesto son sustanciales. Asimismo, es importante destacar que esta caracterización podría también usarse en el futuro para desarrollar controladores con una respuesta mejorada ante perturbaciones aerodinámicas, como en el caso de volar con viento. Finalmente, al ser esta una tesis centrada en las estrategias de control novedosas en sistemas reales para la mejora de su rendimiento en misiones complejas, se ha desarrollado un autopiloto modular fácilmente modificable para implementarlas. Este permite validar experimentalmente nuevos algoritmos y facilita la transición entre teoría y práctica. Para ello, esta herramienta se basa en una interfaz sencilla ampliamente conocida por los investigadores de robótica, Simulink®, y cuenta con un autopiloto de respaldo, PX4, para enfrentarse a los incidentes inesperados que pudieran surgir en vuelo

    An Overview on Principles for Energy Efficient Robot Locomotion

    Get PDF
    Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy efficiency in legged robotic systems, this paper provides an overview on recent advancements in development of such platforms. The covered different perspectives include actuation, leg structure, control and locomotion principles. We review various robotic actuators exploiting compliance in series and in parallel with the drive-train to permit energy recycling during locomotion. We discuss the importance of limb segmentation under efficiency aspects and with respect to design, dynamics analysis and control of legged robots. This paper also reviews a number of control approaches allowing for energy efficient locomotion of robots by exploiting the natural dynamics of the system, and by utilizing optimal control approaches targeting locomotion expenditure. To this end, a set of locomotion principles elaborating on models for energetics, dynamics, and of the systems is studied

    Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art

    Get PDF
    Robot-assisted rehabilitation has become a new mainstream trend for the treatment of stroke patients with movement disability. Pneumatic muscle (PM) is one of the most promising actuators for rehabilitation robots, due to its inherent compliance and safety features. In this paper, we conduct a systematic review on the soft rehabilitation robots driven by pneumatic muscles. This review discusses up to date mechanical structures and control strategies for PMs-actuated rehabilitation robots. A variety of state-of-the-art soft rehabilitation robots are classified and reviewed according to the actuation configurations. Special attentions are paid to control strategies under different mechanical designs, with advanced control approaches to overcome PM’s highly nonlinear and time-varying behaviors and to enhance the adaptability to different patients. Finally, we analyze and highlight the current research gaps and the future directions in this field, which is potential for providing a reliable guidance on the development of advanced soft rehabilitation robots

    Human-robot collaboration for safe object transportation using force feedback

    Full text link
    [EN] This work presents an approach based on multi-task, non-conventional sliding mode control and admittance control for human-robot collaboration aimed at handling applications using force feedback. The proposed robot controller is based on three tasks with different priority levels in order to cooperatively perform the safe transportation of an object with a human operator. In particular, a high-priority task is developed using non-conventional sliding mode control to guarantee safe reference parameters imposed by the task, e.g., keeping a load at a desired orientation (to prevent spill out in the case of liquids, or to reduce undue stresses that may compromise fragile items). Moreover, a second task based on a hybrid admittance control algorithm is used for the human operator to guide the robot by means of a force sensor located at the robot tool. Finally, a third low-priority task is considered for redundant robots in order to use the remaining degrees of freedom of the robot to achieve a pre-set secondary goal (e.g., singularity avoidance, remaining close to a homing configuration for increased safety, etc.) by means of the gradient projection method. The main advantages of the proposed method are robustness and low computational cost. The applicability and effectiveness of the proposed approach are substantiated by experimental results using a redundant 7R manipulator: the Sawyer collaborative robot. (C) 2018 Elsevier B.V. All rights reserved.This work was supported in part by the Spanish Government under Project DPI2017-87656-C2-1-R, and the Generalitat Valenciana under Grants VALi+d APOSTD/2016/044 and BEST/2017/029.Solanes Galbis, JE.; Gracia Calandin, LI.; Muñoz-Benavent, P.; Valls Miro, J.; Carmichael, MG.; Tornero Montserrat, J. (2018). Human-robot collaboration for safe object transportation using force feedback. Robotics and Autonomous Systems. 107:196-208. https://doi.org/10.1016/j.robot.2018.06.003S19620810

    Modeling, Analysis, Force Sensing and Control of Continuum Robots for Minimally Invasive Surgery

    Get PDF
    This dissertation describes design, modeling and application of continuum robotics for surgical applications, specifically parallel continuum robots (PCRs) and concentric tube manipulators (CTMs). The introduction of robotics into surgical applications has allowed for a greater degree of precision, less invasive access to more remote surgical sites, and user-intuitive interfaces with enhanced vision systems. The most recent developments have been in the space of continuum robots, whose exible structure create an inherent safety factor when in contact with fragile tissues. The design challenges that exist involve balancing size and strength of the manipulators, controlling the manipulators over long transmission pathways, and incorporating force sensing and feedback from the manipulators to the user. Contributions presented in this work include: (1) prototyping, design, force sensing, and force control investigations of PCRs, and (2) prototyping of a concentric tube manipulator for use in a standard colonoscope. A general kinetostatic model is presented for PCRs along with identification of multiple physical constraints encountered in design and construction. Design considerations and manipulator capabilities are examined in the form of matrix metrics and ellipsoid representations. Finally, force sensing and control are explored and experimental results are provided showing the accuracy of force estimates based on actuation force measurements and control capabilities. An overview of the design requirements, manipulator construction, analysis and experimental results are provided for a CTM used as a tool manipulator in a traditional colonoscope. Currently, tools used in colonoscopic procedures are straight and exit the front of the scope with 1 DOF of operation (jaws of a grasper, tightening of a loop, etc.). This research shows that with a CTM deployed, the dexterity of these tools can be increased dramatically, increasing accuracy of tool operation, ease of use and safety of the overall procedure. The prototype investigated in this work allows for multiple tools to be used during a single procedure. Experimental results show the feasibility and advantages of the newly-designed manipulators
    corecore