27 research outputs found

    Learning Dense 3D Models from Monocular Video

    Get PDF
    Reconstructing dense, detailed, 3D shape of dynamic scenes from monocular sequences is a challenging problem in computer vision. While robust and even real-time solutions exist to this problem if the observed scene is static, for non-rigid dense shape capture current systems are typically restricted to the use of complex multi-camera rigs, taking advantage of the additional depth channel available in RGB-D cameras, or dealing with specific shapes such as faces or planar surfaces. In this thesis, we present two pieces of work for reconstructing dense generic shapes from monocular sequences. In the first work, we propose an unsupervised approach to the challenging problem of simultaneously segmenting the scene into its constituent objects and reconstructing a 3D model of the scene. The strength of our approach comes from the ability to deal with real-world dynamic scenes and to handle seamlessly different types of motion: rigid, articulated and non-rigid. We formulate the problem as a hierarchical graph-cuts based segmentation where we decompose the whole scene into background and foreground objects and model the complex motion of non-rigid or articulated objects as a set of overlapping rigid parts. To validate the capability of our approach to deal with real-world scenes, we provide 3D reconstructions of some challenging videos from the YouTube Objects and KITTI dataset, etc. In the second work, we propose a direct approach for capturing the dense, detailed 3D geometry of generic, complex non-rigid meshes using a single camera. Our method makes use of a single RGB video as input; it can capture the deformations of generic shapes; and the depth estimation is dense, per-pixel and direct. We first reconstruct a dense 3D template of the shape of the object, using a short rigid sequence, and subsequently perform online reconstruction of the non-rigid mesh as it evolves over time. In our experimental evaluation, we show a range of qualitative results on novel datasets and quantitative comparison results with stereo reconstruction

    RenderMe-360: A Large Digital Asset Library and Benchmarks Towards High-fidelity Head Avatars

    Full text link
    Synthesizing high-fidelity head avatars is a central problem for computer vision and graphics. While head avatar synthesis algorithms have advanced rapidly, the best ones still face great obstacles in real-world scenarios. One of the vital causes is inadequate datasets -- 1) current public datasets can only support researchers to explore high-fidelity head avatars in one or two task directions; 2) these datasets usually contain digital head assets with limited data volume, and narrow distribution over different attributes. In this paper, we present RenderMe-360, a comprehensive 4D human head dataset to drive advance in head avatar research. It contains massive data assets, with 243+ million complete head frames, and over 800k video sequences from 500 different identities captured by synchronized multi-view cameras at 30 FPS. It is a large-scale digital library for head avatars with three key attributes: 1) High Fidelity: all subjects are captured by 60 synchronized, high-resolution 2K cameras in 360 degrees. 2) High Diversity: The collected subjects vary from different ages, eras, ethnicities, and cultures, providing abundant materials with distinctive styles in appearance and geometry. Moreover, each subject is asked to perform various motions, such as expressions and head rotations, which further extend the richness of assets. 3) Rich Annotations: we provide annotations with different granularities: cameras' parameters, matting, scan, 2D/3D facial landmarks, FLAME fitting, and text description. Based on the dataset, we build a comprehensive benchmark for head avatar research, with 16 state-of-the-art methods performed on five main tasks: novel view synthesis, novel expression synthesis, hair rendering, hair editing, and talking head generation. Our experiments uncover the strengths and weaknesses of current methods. RenderMe-360 opens the door for future exploration in head avatars.Comment: Technical Report; Project Page: 36; Github Link: https://github.com/RenderMe-360/RenderMe-36

    Towards accurate multi-person pose estimation in the wild

    Get PDF
    In this thesis we are concerned with the problem of articulated human pose estimation and pose tracking in images and video sequences. Human pose estimation is a task of localising major joints of a human skeleton in natural images and is one of the most important visual recognition tasks in the scenes containing humans with numerous applications in robotics, virtual and augmented reality, gaming and healthcare among others. Articulated human pose tracking requires tracking multiple persons in the video sequence while simultaneously estimating full body poses. This task is important for analysing surveillance footage, activity recognition, sports analytics, etc. Most of the prior work focused on the pose estimation of single pre-localised humans whereas here we address a case with multiple people in real world images which entails several challenges such as person-person overlaps in highly crowded scenes, unknown number of people or people entering and leaving video sequences. The first contribution is a multi-person pose estimation algorithm based on the bottom-up detection-by-grouping paradigm. Unlike the widespread top-down approaches our method detects body joints and pairwise relations between them in a single forward pass of a convolutional neural network. Multi-person parsing is performed by optimizing a joint objective based on a multicut graph partitioning framework. Secondly, we extend our pose estimation approach to articulated multi-person pose tracking in videos. Our approach performs multi-target tracking and pose estimation in a holistic manner by optimising a single objective. We further simplify and refine the formulation which allows us to reach close to the real-time performance. Thirdly, we propose a large scale dataset and a benchmark for articulated multi-person tracking. It is the first dataset of video sequences comprising complex multi-person scenes and fully annotated tracks with 2D keypoints. Our fourth contribution is a method for estimating 3D body pose using on-body wearable cameras. Our approach uses a pair of downward facing, head-mounted cameras and captures an entire body. This egocentric approach is free of limitations of traditional setups with external cameras and can estimate body poses in very crowded environments. Our final contribution goes beyond human pose estimation and is in the field of deep learning of 3D object shapes. In particular, we address the case of reconstructing 3D objects from weak supervision. Our approach represents objects as 3D point clouds and is able to learn them with 2D supervision only and without requiring camera pose information at training time. We design a differentiable renderer of point clouds as well as a novel loss formulation for dealing with camera pose ambiguity.In dieser Arbeit behandeln wir das Problem der SchĂ€tzung und Verfolgung artikulierter menschlicher Posen in Bildern und Video-Sequenzen. Die SchĂ€tzung menschlicher Posen besteht darin die Hauptgelenke des menschlichen Skeletts in natĂŒrlichen Bildern zu lokalisieren und ist eine der wichtigsten Aufgaben der visuellen Erkennung in Szenen, die Menschen beinhalten. Sie hat zahlreiche Anwendungen in der Robotik, virtueller und erweiterter RealitĂ€t, in Videospielen, in der Medizin und weiteren Bereichen. Die Verfolgung artikulierter menschlicher Posen erfordert die Verfolgung mehrerer Personen in einer Videosequenz bei gleichzeitiger SchĂ€tzung vollstĂ€ndiger Körperhaltungen. Diese Aufgabe ist besonders wichtig fĂŒr die Analyse von Video-Überwachungsaufnahmen, AktivitĂ€tenerkennung, digitale Sportanalyse etc. Die meisten vorherigen Arbeiten sind auf die SchĂ€tzung einzelner Posen vorlokalisierter Menschen fokussiert, wohingegen wir den Fall mehrerer Personen in natĂŒrlichen Aufnahmen betrachten. Dies bringt einige Herausforderungen mit sich, wie die Überlappung verschiedener Personen in dicht gedrĂ€ngten Szenen, eine unbekannte Anzahl an Personen oder Personen die das Sichtfeld der Video-Sequenz verlassen oder betreten. Der erste Beitrag ist ein Algorithmus zur SchĂ€tzung der Posen mehrerer Personen, welcher auf dem Paradigma der Erkennung durch Gruppierung aufbaut. Im Gegensatz zu den verbreiteten Verfeinerungs-AnsĂ€tzen erkennt unsere Methode Körpergelenke and paarweise Beziehungen zwischen ihnen in einer einzelnen VorwĂ€rtsrechnung eines faltenden neuronalen Netzwerkes. Die Gliederung in mehrere Personen erfolgt durch Optimierung einer gemeinsamen Zielfunktion, die auf dem Mehrfachschnitt-Problem in der Graphenzerlegung basiert. Zweitens erweitern wir unseren Ansatz zur Posen-Bestimmung auf das Verfolgen mehrerer Personen und deren Artikulation in Videos. Unser Ansatz fĂŒhrt eine Verfolgung mehrerer Ziele und die SchĂ€tzung der zugehörigen Posen in ganzheitlicher Weise durch, indem eine einzelne Zielfunktion optimiert wird. Desweiteren vereinfachen und verfeinern wir die Formulierung, was unsere Methode nah an Echtzeit-Leistung bringt. Drittens schlagen wir einen großen Datensatz und einen Bewertungsmaßstab fĂŒr die Verfolgung mehrerer artikulierter Personen vor. Dies ist der erste Datensatz der Video-Sequenzen von komplexen Szenen mit mehreren Personen beinhaltet und deren Spuren komplett mit zwei-dimensionalen Markierungen der SchlĂŒsselpunkte versehen sind. Unser vierter Beitrag ist eine Methode zur SchĂ€tzung von drei-dimensionalen Körperhaltungen mittels am Körper tragbarer Kameras. Unser Ansatz verwendet ein Paar nach unten gerichteter, am Kopf befestigter Kameras und erfasst den gesamten Körper. Dieser egozentrische Ansatz ist frei von jeglichen Limitierungen traditioneller Konfigurationen mit externen Kameras und kann Körperhaltungen in sehr dicht gedrĂ€ngten Umgebungen bestimmen. Unser letzter Beitrag geht ĂŒber die SchĂ€tzung menschlicher Posen hinaus in den Bereich des tiefen Lernens der Gestalt von drei-dimensionalen Objekten. Insbesondere befassen wir uns mit dem Fall drei-dimensionale Objekte unter schwacher Überwachung zu rekonstruieren. Unser Ansatz reprĂ€sentiert Objekte als drei-dimensionale Punktwolken and ist im Stande diese nur mittels zwei-dimensionaler Überwachung und ohne Informationen ĂŒber die Kamera-Ausrichtung zur Trainingszeit zu lernen. Wir entwerfen einen differenzierbaren Renderer fĂŒr Punktwolken sowie eine neue Formulierung um mit uneindeutigen Kamera-Ausrichtungen umzugehen

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Gaining Insight into Determinants of Physical Activity using Bayesian Network Learning

    Get PDF
    Contains fulltext : 228326pre.pdf (preprint version ) (Open Access) Contains fulltext : 228326pub.pdf (publisher's version ) (Open Access)BNAIC/BeneLearn 202

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity
    corecore