715 research outputs found

    DONS: Dynamic Optimized Neighbor Selection for smart blockchain networks

    Get PDF
    Blockchain (BC) systems mainly depend on the consistent state of the Distributed Ledger (DL) at different logical and physical places of the network. The majority of network nodes need to be enforced to use one or both of the following approaches to remain consistent: (i) to wait for certain delays (i.e. by requesting a hard puzzle solution as in PoW and PoUW, or to wait for random delays as in PoET, etc.) (ii) to propagate shared data through shortest possible paths within the network. The first approach may cause higher energy consumption and/or lower throughput rates if not optimized, and in many cases these features are conventionally fixed. Therefore, it is preferred to enhance the second approach with some optimization. Previous works for this approach have the following drawbacks: they may violate the identity privacy of miners, only locally optimize the Neighbor Selection method (NS), do not consider the dynamicity of the network, or require the nodes to know the precise size of the network at all times. In this paper, we address these issues by proposing a Dynamic and Optimized NS protocol called DONS, using a novel privacy-aware leader election within the public BC called AnoLE, where the leader anonymously solves the The Minimum Spanning Tree problem (MST) of the network in polynomial time. Consequently, miners are informed about the optimum NS according to the current state of network topology. We analytically evaluate the complexity, the security and the privacy of the proposed protocols against state-of-the-art MST solutions for DLs and well known attacks. Additionally, we experimentally show that the proposed protocols outperform state-of-the-art NS solutions for public BCs. Our evaluation shows that the proposed DONS and AnoLE protocols are secure, private, and they acutely outperform all current NS solutions in terms of block finality and fidelity. © 2021 The Author(s

    Optimal Witnessing of Healthcare IoT Data Using Blockchain Logging Contract

    Full text link
    Verification of data generated by wearable sensors is increasingly becoming of concern to health service providers and insurance companies. There is a need for a verification framework that various authorities can request a verification service for the local network data of a target IoT device. In this paper, we leverage blockchain as a distributed platform to realize an on-demand verification scheme. This allows authorities to automatically transact with connected devices for witnessing services. A public request is made for witness statements on the data of a target IoT that is transmitted on its local network, and subsequently, devices (in close vicinity of the target IoT) offer witnessing service. Our contributions are threefold: (1) We develop a system architecture based on blockchain and smart contract that enables authorities to dynamically avail a verification service for data of a subject device from a distributed set of witnesses which are willing to provide (in a privacy-preserving manner) their local wireless measurement in exchange of monetary return; (2) We then develop a method to optimally select witnesses in such a way that the verification error is minimized subject to monetary cost constraints; (3) Lastly, we evaluate the efficacy of our scheme using real Wi-Fi session traces collected from a five-storeyed building with more than thirty access points, representative of a hospital. According to the current pricing schedule of the Ethereum public blockchain, our scheme enables healthcare authorities to verify data transmitted from a typical wearable device with the verification error of the order 0.01% at cost of less than two dollars for one-hour witnessing service.Comment: 12 pages, 12 figure

    On Blockchain Performance Enhancement: A Systematic Map of Strategies Used

    Get PDF
    Blockchain technology is one among the recent innovations in the computing industry. Blockchains have gathered a widespread interest in the industry mainly due to their security promise. Despite the anticipated benefits of Blockchains, there are several limitations which make the technology less suitable in large scale applications such as banking, one being low throughput. Several initiatives to improve the throughput of Blockchains are being tried out both in the academia and the business worlds but no systematic classification of the initiatives and the strategies used has been done. This study explores Blockchain performance improvement initiatives and classify the initiatives by the improvement strategy used. This study has found that, out of 365 articles on the area of Blockchain performance, 300 were solution proposals aimed at improving the performance of Blockchains. The most used strategies in these proposals were alternative to PoW, sharding and multi-chain architecture

    Trust and reputation management for securing collaboration in 5G access networks: the road ahead

    Get PDF
    Trust represents the belief or perception of an entity, such as a mobile device or a node, in the extent to which future actions and reactions are appropriate in a collaborative relationship. Reputation represents the network-wide belief or perception of the trustworthiness of an entity. Each entity computes and assigns a trust or reputation value, which increases and decreases with the appropriateness of actions and reactions, to another entity in order to ensure a healthy collaborative relationship. Trust and reputation management (TRM) has been investigated to improve the security of traditional networks, particularly the access networks. In 5G, the access networks are multi-hop networks formed by entities which may not be trustable, and so such networks are prone to attacks, such as Sybil and crude attacks. TRM addresses such attacks to enhance the overall network performance, including reliability, scalability, and stability. Nevertheless, the investigation of TRM in 5G, which is the next-generation wireless networks, is still at its infancy. TRM must cater for the characteristics of 5G. Firstly, ultra-densification due to the exponential growth of mobile users and data traffic. Secondly, high heterogeneity due to the different characteristics of mobile users, such as different transmission characteristics (e.g., different transmission power) and different user equipment (e.g., laptops and smartphones). Thirdly, high variability due to the dynamicity of the entities’ behaviors and operating environment. TRM must also cater for the core features of 5G (e.g., millimeter wave transmission, and device-to-device communication) and the core technologies of 5G (e.g., massive MIMO and beamforming, and network virtualization). In this paper, a review of TRM schemes in 5G and traditional networks, which can be leveraged to 5G, is presented. We also provide an insight on some of the important open issues and vulnerabilities in 5G networks that can be resolved using a TRM framework

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    A lightweight blockchain based framework for underwater ioT

    Get PDF
    The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including underwater monitoring, where sensors are located at various depths, and data must be transmitted to surface base stations for storage and processing. Ensuring that data transmitted across hierarchical sensor networks are kept secure and private without high computational cost remains a challenge. In this paper, we propose a multilevel sensor monitoring architecture. Our proposal includes a layer-based architecture consisting of Fog and Cloud elements to process and store and process the Internet of Underwater Things (IoUT) data securely with customized Blockchain technology. The secure routing of IoUT data through the hierarchical topology ensures the legitimacy of data sources. A security and performance analysis was performed to show that the architecture can collect data from IoUT devices in the monitoring region efficiently and securely. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
    corecore