93 research outputs found

    Numerical Analysis of Nonuniform Geoelectric Field Impacts on Geomagnetic Induction in Pipeline Networks

    Get PDF
    Modeling the geomagnetic induction in pipeline networks is essential for the risk assessment and management of geomagnetic disturbances. The induced geoelectric field (GEF) is usually spatially nonuniform, depending on the distribution of the geomagnetic variation and the earth conductivity. However, few studies have been conducted on the induction in complex pipeline networks with nonuniform GEF. In this article, a calculation model for induction in pipeline networks with nonuniform GEF is proposed by utilizing the modified equivalent-pi circuits. Then, the proposed model is used to investigate the distribution of pipe-to-soil potentials and geomagnetically induced currents in the pipeline network under several typical nonuniform GEF scenarios due to geomagnetic source fields, including local enhancement and spatially gradual variation. Furthermore, taking the coast effect as a typical case, the influence of the lateral variation of earth conductivity on the induction is analyzed. The results show that the nonuniform GEF may greatly affect the induction results in the local parts of the pipeline network

    Earth conductivity structures and their effects on geomagnetic induction in pipelines

    Get PDF
    Anomalous, large pipe-to-soil potentials (PSP) have been observed along a natural gas pipeline in eastern Ontario, Canada, where there is a major geological contact between the highly resistive rocks of the Precambrian Shield to the west and the more conductive Paleozoic sediments to the east. This study tested the hypothesis that large variations of PSP are related to lateral changes of Earth conductivity under the pipeline. Concurrent and co-located PSP and magnetotelluric (MT) geophysical data were acquired in the study area. Results from the MT survey were used to model PSP variations based on distributed-source transmission line theory, using a spatially-variant surface geoelectric field. Different models were built to investigate the impact of different subsurface features. Good agreement between modelled and observed PSP was reached when impedance peaks related to major changes of subsurface geological conditions were included. The large PSP could therefore be attributed to the presence of resistive intrusive bodies in the upper crust and/or boundaries between tectonic terranes. This study demonstrated that combined PSP-MT investigations are a useful tool in the identification of potential hazards caused by geomagnetically induced currents in pipelines

    Validating GIC modeling in the Spanish power grid by differential magnetometry

    Get PDF
    series of experiences and recommendations are presented concerning the derivation of geomagnetically induced currents (GIC) by use of the differential magnetometry method (DMM) under power lines. This indirect technique, intended to obtain observations to validate GIC models, is an alternative to measuring the current flow in the transformer neutrals. It is a non-intrusive and autonomous technique, as the procedure does not depend on the grid operator. In contrast, the selection of suitable sites devoid of human interferences, the need for power to supply the magnetometer, the data acquisition and transmission system, along with the choice of the appropriate instrumentation are difficulties that make not just any site suitable for installation and often require costly solutions. We focus on the methodology followed to estimate the GIC flowing in several transmission lines of the Spanish power grid with the aim of validating our GIC models, and we share our experience on the installation of the measuring points. Uncertainty inherent in the DMM is assessed, showing that noise is the main handicap, although it can be minimized with appropriate filtering. According to such experience, on some occasions only total DC currents above a significant fraction of 1 A give magnetic signatures well above the noise level, so this figure can roughly be considered as the threshold limit for detection. The low solar activity, combined with the mid-latitude condition of Spain, limited the significance of available recorded data, but we can already report and analyze the results for several minor geomagnetic storms

    Space Weather and Power Grids - A Vulnerability Assessment

    Get PDF
    Strong geomagnetic disturbances resulting from solar activity can have a major impact on ground-based infrastructures, such as power grids, pipelines and railway systems. The high voltage transmission network is particularly affected as currents induced by geomagnetic storms, so-called GICs, can severely damage network equipment possibly leading to system collapse. Therefore, increasing attention has been devoted to understanding the vulnerability of power grids to space weather conditions. In this study, we aim at analysing the vulnerability of power grids to extreme space weather. By means of complex network theory, we propose an analysis approach to understand how geomagnetically induced currents are driven through the power network based on its structural and physical characteristics. As a test network we used the Finnish power grid for which a study using network centrality measures was carried out to understand which components are the most critical for the system when exposed to an electric field of 1V/km. This information is helpful as the identification and ranking of critical components can help to identify where and how mitigation measures should be implemented to increase the system’s resilience to space weather impact. We have also subjected the grid to varying angles of the electric field. In addition, we have carried out a scoping study adding load flow to the GICs induced in the system. The preliminary results suggest that the benchmark system can resist GICs induced from high intensity electric fields. Moreover, the simplified network seems more prone to collapse if the electric field is oriented northward. Work is underway to further validate and expand our approach with the aim to eventually carry out a risk assessment of space weather impact on the power grid at EU level.JRC.G.5-Security technology assessmen

    Geolectric field measurement, modelling and validation during geomagnetic storms in the UK

    Get PDF
    Significant geoelectric fields are produced by the interaction of rapidly varying magnetic fields with the conductive Earth, particularly during intense geomagnetic activity. Though usually harmless, large or sustained geoelectric fields can damage grounded infrastructure such as high-voltage transformers and pipelines via geomagnetically induced currents (GICs). A key aspect of understanding the effects of space weather on grounded infrastructure is through the spatial and temporal variation of the geoelectric field. Globally, there are few long-term monitoring sites of the geoelectric field, so in 2012 measurements of the horizontal surface field were started at Lerwick, Eskdalemuir and Hartland observatories in the UK. Between 2012 and 2020, the maximum value of the geoelectric field observed was around 1 V/km in Lerwick, 0.5 V/km in Eskdalemuir and 0.1 V/km in Hartland during the March 2015 storm. These long-term observations also allow comparisons with models of the geoelectric field to be made. We use the measurements to compute magnetotelluric impedance transfer functions at each observatory for periods from 20 to 30,000 s. These are then used to predict the geoelectric field at the observatory sites during selected storm times that match the recorded fields very well (correlation around 0.9). We also compute geoelectric field values from a thin-sheet model of Britain, accounting for the diverse geological and bathymetric island setting. We find the thin-sheet model captures the peak and phase of the band-passed geoelectric field reasonably well, with linear correlation of around 0.4 in general. From these two modelling approaches, we generate geoelectric field values for historic storms (March 1989 and October 2003) and find the estimates of past peak geoelectric fields of up to 1.75 V/km in Eskdalemuir. However, evidence from high voltage transformer GIC measurements during these storms suggests these estimates are likely to represent an underestimate of the true value

    An equivalent-effect phenomenon in eddy current non-destructive testing of thin structures

    Full text link
    The inductance/impedance due to thin metallic structures in non-destructive testing (NDT) is difficult to evaluate. In particular, in Finite Element Method (FEM) eddy current simulation, an extremely fine mesh is required to accurately simulate skin effects especially at high frequencies, and this could cause an extremely large total mesh for the whole problem, i.e. including, for example, other surrounding structures and excitation sources like coils. Consequently, intensive computation requirements are needed. In this paper, an equivalent-effect phenomenon is found, which has revealed that alternative structures can produce the same effect on the sensor response, i.e. mutual impedance/inductance of coupled coils if a relationship (reciprocal relationship) between the electrical conductivity and the thickness of the structure is observed. By using this relationship, the mutual inductance/impedance can be calculated from the equivalent structures with much fewer mesh elements, which can significantly save the computation time. In eddy current NDT, coils inductance/impedance is normally used as a critical parameter for various industrial applications, such as flaw detection, coating and microstructure sensing. Theoretical derivation, measurements and simulations have been presented to verify the feasibility of the proposed phenomenon
    corecore