34,266 research outputs found

    Electrostatically Controlled Magnetization Rotation in Ferromagnet-Topological Insulator Planar Structures

    Full text link
    An approach to the electrostatic control of 9090^{\circ} magnetization rotation in the hybrid structures composed of topological insulators (TIs) and adjacent ferromagnetic insulators (FMI) is proposed and studied. The concept is based on TI electron energy variation with in-plane to put-of plane FMI magnetization turn. The calculations explicitly expose the effect of free energy variability in the form of the electrically controlled uniaxial magnetic anisotropy, which depends on proximate exchange interaction and TI surface electron density. Combining with inherent anisotropy, the magnetization rotation from in-plane to out-of-plane direction is shown to be realizable for 1.7~2.7 ns under the electrical variation of TI chemical potential in the range ±\pm 100 meV around Dirac point. When bias is withdrawn a small signal current can target the out-of-plane magnetization instable state to the desirable direction of in-plane easy axis, thus the structure can lay the foundation for low energy nonvolatile memory prototype

    Survival of the selfish: contrasting self-referential and survival-based encoding

    Get PDF
    Processing information in the context of personal survival scenarios elicits a memory advantage, relative to other rich encoding conditions such as self-referencing. However, previous research is unable to distinguish between the influence of survival and self-reference because personal survival is a self-referent encoding context. To resolve this issue, participants in the current study processed items in the context of their own survival and a familiar other person’s survival, as well as in a semantic context. Recognition memory for the items revealed that personal survival elicited a memory advantage relative to semantic encoding, whereas other-survival did not. These findings reinforce suggestions that the survival effect is closely tied with self-referential encoding, ensuring that fitness information of potential importance to self is successfully retained in memory

    Media outlets and their moguls: why concentrated individual or family ownership is bad for editorial independence

    Get PDF
    This article investigates the levels of owner influence in 211 different print and broadcast outlets in 32 different European media markets. Drawing on the literature from industrial organisation, it sets out reasons why we should expect greater levels of influence where ownership of individual outlets is concentrated; where it is concentrated in the hands of individuals or families; and where ownership groups own multiple outlets in the same media market. Conversely, we should expect lower levels of influence where ownership is dispersed between transnational companies. The articles uses original data on the ownership structures of these outlets, and combines it with reliable expert judgments as to the level of owner influence in each of the outlets. These hypotheses are tested and confirmed in a multilevel regression model of owner influence. The findings are relevant for policy on ownership limits in the media, and for the debate over transnational versus local control of media

    Fast algorithms for matching CCD images to a stellar catalogue

    Full text link
    Two new algorithms are described for matching two dimensional coordinate lists of point sources that are signifcantly faster than previous methods. By matching rarely occurring triangles (or more complex shapes) in the two lists, and by ordering searches by decreasing probability of success, it is demonstrated that very few candidates need be considered to find a successful match. Moreover, by immediately testing the suitability of a potential match using an efficient mechanism, the need to process the entire candidate set is avoided, yielding considerable performance improvements. Triangles are described by a cosine metric that reduces the density of triangle space, permitting efficient searches. An alternative shape characterization method that reduces computational overhead in the construction phase is discussed. The algorithms are tested on a set of 10 063 wide-field survey images, with fields-of-view up to 4.8 x 3.6 deg, successfully matching 100% of the images in a mean elapsed time of 6 ms (2.4 GHz Athlon CPU). The elapsed time of the searching phase is shown to vary by less than 1 ms for list sizes between 10 and 200 points, demonstrating that fast, robust searches may be completed in nearly constant time, independent of list size.Comment: Accepted for publication in Publications of the Astronomical Society of Australi
    corecore