28 research outputs found

    Robust multi-view video streaming through adaptive intra refresh video transcoding

    Get PDF
    A multi-view video (MVV) transcoder has been designed. The objective is to deliver maximum quality 3D video data from the source to the 2D video destination, through a wireless communication channel using all of its available bandwidth. This design makes use of the spatial and view downscaling algorithm. The method involves the reuse of motion information obtained from both the reference frames and views. Consequently, highly compressed MVV is converted into low bit rate single view video that is compliant with H.264/AVC format. Adaptive intra refresh (AIR) error resilience tool is configured to mitigate the error propagation resulting from channel conditions. Experimental results indicate that error resilience plus transcoding performed better than the cascaded technique. Simulation results demonstrated an efficient 3D video streaming service applied to low power mobile devices

    Robust Multi-View Video Streaming through Adaptive Intra Refresh Video Transcoding

    Get PDF
    A multi-view video (MVV) transcoder has been designed. The objective is to deliver maximum quality 3D video data from the source to the 2D video destination, through a wireless communication channel using all of its available bandwidth. This design makes use of the spatial and view downscaling algorithm. The method involves the reuse of motion information obtained from both the reference frames and views. Consequently, highly compressed MVV is converted into low bit rate single view video that is compliant with H.264/AVC format. Adaptive intra refresh (AIR) error resilience tool is configured to mitigate the error propagation resulting from channel conditions. Experimental results indicate that error resilience plus transcoding performed better than the cascaded technique. Simulation results demonstrated an efficient 3D video streaming service applied to low power mobile devices

    Machine Learning Algorithms for Provisioning Cloud/Edge Applications

    Get PDF
    Mención Internacional en el título de doctorReinforcement Learning (RL), in which an agent is trained to make the most favourable decisions in the long run, is an established technique in artificial intelligence. Its popularity has increased in the recent past, largely due to the development of deep neural networks spawning deep reinforcement learning algorithms such as Deep Q-Learning. The latter have been used to solve previously insurmountable problems, such as playing the famed game of “Go” that previous algorithms could not. Many such problems suffer the curse of dimensionality, in which the sheer number of possible states is so overwhelming that it is impractical to explore every possible option. While these recent techniques have been successful, they may not be strictly necessary or practical for some applications such as cloud provisioning. In these situations, the action space is not as vast and workload data required to train such systems is not as widely shared, as it is considered commercialy sensitive by the Application Service Provider (ASP). Given that provisioning decisions evolve over time in sympathy to incident workloads, they fit into the sequential decision process problem that legacy RL was designed to solve. However because of the high correlation of time series data, states are not independent of each other and the legacy Markov Decision Processes (MDPs) have to be cleverly adapted to create robust provisioning algorithms. As the first contribution of this thesis, we exploit the knowledge of both the application and configuration to create an adaptive provisioning system leveraging stationary Markov distributions. We then develop algorithms that, with neither application nor configuration knowledge, solve the underlying Markov Decision Process (MDP) to create provisioning systems. Our Q-Learning algorithms factor in the correlation between states and the consequent transitions between them to create provisioning systems that do not only adapt to workloads, but can also exploit similarities between them, thereby reducing the retraining overhead. Our algorithms also exhibit convergence in fewer learning steps given that we restructure the state and action spaces to avoid the curse of dimensionality without the need for the function approximation approach taken by deep Q-Learning systems. A crucial use-case of future networks will be the support of low-latency applications involving highly mobile users. With these in mind, the European Telecommunications Standards Institute (ETSI) has proposed the Multi-access Edge Computing (MEC) architecture, in which computing capabilities can be located close to the network edge, where the data is generated. Provisioning for such applications therefore entails migrating them to the most suitable location on the network edge as the users move. In this thesis, we also tackle this type of provisioning by considering vehicle platooning or Cooperative Adaptive Cruise Control (CACC) on the edge. We show that our Q-Learning algorithm can be adapted to minimize the number of migrations required to effectively run such an application on MEC hosts, which may also be subject to traffic from other competing applications.This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Antonio Fernández Anta.- Secretario: Diego Perino.- Vocal: Ilenia Tinnirell

    Provider-Controlled Bandwidth Management for HTTP-based Video Delivery

    Get PDF
    Over the past few years, a revolution in video delivery technology has taken place as mobile viewers and over-the-top (OTT) distribution paradigms have significantly changed the landscape of video delivery services. For decades, high quality video was only available in the home via linear television or physical media. Though Web-based services brought video to desktop and laptop computers, the dominance of proprietary delivery protocols and codecs inhibited research efforts. The recent emergence of HTTP adaptive streaming protocols has prompted a re-evaluation of legacy video delivery paradigms and introduced new questions as to the scalability and manageability of OTT video delivery. This dissertation addresses the question of how to enable for content and network service providers the ability to monitor and manage large numbers of HTTP adaptive streaming clients in an OTT environment. Our early work focused on demonstrating the viability of server-side pacing schemes to produce an HTTP-based streaming server. We also investigated the ability of client-side pacing schemes to work with both commodity HTTP servers and our HTTP streaming server. Continuing our client-side pacing research, we developed our own client-side data proxy architecture which was implemented on a variety of mobile devices and operating systems. We used the portable client architecture as a platform for investigating different rate adaptation schemes and algorithms. We then concentrated on evaluating the network impact of multiple adaptive bitrate clients competing for limited network resources, and developing schemes for enforcing fair access to network resources. The main contribution of this dissertation is the definition of segment-level client and network techniques for enforcing class of service (CoS) differentiation between OTT HTTP adaptive streaming clients. We developed a segment-level network proxy architecture which works transparently with adaptive bitrate clients through the use of segment replacement. We also defined a segment-level rate adaptation algorithm which uses download aborts to enforce CoS differentiation across distributed independent clients. The segment-level abstraction more accurately models application-network interactions and highlights the difference between segment-level and packet-level time scales. Our segment-level CoS enforcement techniques provide a foundation for creating scalable managed OTT video delivery services

    Interoperability of semantics in news production

    Get PDF

    The Continuum Architecture: Towards Enabling Chaotic Ubiquitous Computing

    Get PDF
    Interactions in the style of the ubiquitous computing paradigm are possible today, but only in handcrafted environments within one administrative and technological realm. This thesis describes an architecture (called Continuum), a design that realises the architecture, and a proof-of-concept implementation that brings ubiquitous computing to chaotic environments. Essentially, Continuum enables an ecology at the edge of the network, between users, competing service providers from overlapping administrative domains, competing internet service providers, content providers, and software developers that want to add value to the user experience. Continuum makes the ubiquitous computing functionality orthogonal to other application logic. Existing web applications are augmented for ubiquitous computing with functionality that is dynamically compiled and injected by a middleware proxy into the web pages requested by a web browser at the user?s mobile device. This enables adaptability to environment variability, manageability without user involvement, and expansibility without changes to the mobile. The middleware manipulates self-contained software units with precise functionality (called frames), which help the user interact with contextual services in conjunction with the data to which they are attached. The middleware and frame design explicitly incorporates the possibility of discrepancies between the assumptions of ubiquitous-computing software developers and field realities: multiple administrative domains, unavailable service, unavailable software, and missing contextual information. A framework for discovery and authorisation addresses the chaos inherent to the paradigm through the notion of role assertions acquired dynamically by the user. Each assertion represents service access credentials and contains bootstrapping points for service discovery on behalf of the holding user. A proof-of-concept prototype validates the design, and implements several frames that demonstrate general functionality, including driving discovery queries over multiple service discovery protocols and making equivalences between service types, across discovery protocols

    Actas da 10ª Conferência sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio
    corecore