2,951 research outputs found

    Forward-backward truncated Newton methods for convex composite optimization

    Full text link
    This paper proposes two proximal Newton-CG methods for convex nonsmooth optimization problems in composite form. The algorithms are based on a a reformulation of the original nonsmooth problem as the unconstrained minimization of a continuously differentiable function, namely the forward-backward envelope (FBE). The first algorithm is based on a standard line search strategy, whereas the second one combines the global efficiency estimates of the corresponding first-order methods, while achieving fast asymptotic convergence rates. Furthermore, they are computationally attractive since each Newton iteration requires the approximate solution of a linear system of usually small dimension

    A Scalable and Extensible Framework for Superposition-Structured Models

    Full text link
    In many learning tasks, structural models usually lead to better interpretability and higher generalization performance. In recent years, however, the simple structural models such as lasso are frequently proved to be insufficient. Accordingly, there has been a lot of work on "superposition-structured" models where multiple structural constraints are imposed. To efficiently solve these "superposition-structured" statistical models, we develop a framework based on a proximal Newton-type method. Employing the smoothed conic dual approach with the LBFGS updating formula, we propose a scalable and extensible proximal quasi-Newton (SEP-QN) framework. Empirical analysis on various datasets shows that our framework is potentially powerful, and achieves super-linear convergence rate for optimizing some popular "superposition-structured" statistical models such as the fused sparse group lasso
    • …
    corecore