170 research outputs found

    Generalized Low Rank Models

    Full text link
    Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. Here, we extend the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, kk-means, kk-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.Comment: 84 pages, 19 figure

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    A Framework for Image Denoising Using First and Second Order Fractional Overlapping Group Sparsity (HF-OLGS) Regularizer

    Get PDF
    Denoising images subjected to Gaussian and Poisson noise has attracted attention in many areas of image processing. This paper introduces an image denoising framework using higher order fractional overlapping group sparsity prior to sparser image representation constraint. The proposed prior has a capability of avoiding staircase effects in both edges and oscillatory patterns (textures). We adopt the alternating direction method of multipliers for optimizing the proposed objective function by converting it into a constrained optimization problem using variable splitting approach. Finally, we conduct experiments on various degraded images and compare our results with those of several state-of-the-art methods. The numerical results show that the proposed fractional order image denoising framework improves the peak signal to noise ratio of an image by preserving the textures and eliminating the staircases effects. This leads to visually pleasant restored images which exhibit a higher value of Structural SIMilarity score when compared to that of other methods

    Optimization and Applications

    Get PDF
    Proceedings of a workshop devoted to optimization problems, their theory and resolution, and above all applications of them. The topics covered existence and stability of solutions; design, analysis, development and implementation of algorithms; applications in mechanics, telecommunications, medicine, operations research

    A flexible framework for solving constrained ratio problems in machine learning

    Get PDF
    The (constrained) optimization of a ratio of non-negative set functions is a problem appearing frequently in machine learning. As these problems are typically NP hard, the usual approach is to approximate them through convex or spectral relaxations. While these relaxations can be solved globally optimal, they are often too loose and thus produce suboptimal results. In this thesis we present a flexible framework for solving such constrained fractional set programs (CFSP). The main idea is to transform the combinatorial problem into an equivalent unconstrained continuous problem. We show that such a tight relaxation exists for every CFSP. It turns out that the tight relaxations can be related to a certain type of nonlinear eigenproblem. We present a method to solve nonlinear eigenproblems and thus optimize the corresponding ratios of in general non-differentiable differences of convex functions. While the global optimality cannot be guaranteed, we can prove the convergence to a solution of the associated nonlinear eigenproblem. Moreover, in practice the loose spectral relaxations are outperformed by a large margin. Going over to constrained fractional set programs and the corresponding nonlinear eigenproblems leads to a greater modelling flexibility, as we demonstrate for several applications in data analysis, namely the optimization of balanced graph cuts, constrained local clustering, community detection via densest subgraphs and sparse principal component analysis.Die (beschränkte) Optimierung von nichtnegativen Bruchfunktionen über Mengen ist ein häufig auftretendes Problem im maschinellen Lernen. Da diese Probleme typischerweise NP-schwer sind, besteht der übliche Ansatz darin, sie durch konvexe oder spektrale Relaxierungen zu approximieren. Diese können global optimal gelöst werden, sind jedoch häufig zu schwach und führen deshalb zu suboptimalen Ergebnissen. In dieser Arbeit stellen wir ein flexibles Verfahren zur Lösung solcher beschränkten fraktionellen Mengenprogramme (BFMP) vor. Die Grundidee ist, das kombinatorische in ein equivalentes unbeschränktes kontinuerliches Problem umzuwandeln. Wir zeigen dass dies für jedes BFMP möglich ist. Die strenge Relaxierung kann dann mit einem nichtlinearen Eigenproblem in Bezug gebracht werden. Wir präsentieren ein Verfahren zur Lösung der nichtlinearen Eigenprobleme und damit der Optimierung der im Allgemeinen nichtdifferenzierbaren und nichtkonvexen Bruchfunktionen. Globale Optimalität kann nicht garantiert werden, jedoch die Lösung des nichtlinearen Eigenproblems. Darüberhinaus werden in der Praxis die schwachen spektralen Relaxierungen mit einem großen Vorsprung übertroffen. Der Übergang zu BFMPs und nichtlinearen Eigenproblemen führt zu einer verbesserten Flexibilität in der Modellbildung, die wir anhand von Anwendungen in Graphpartitionierung, beschränkter lokaler Clusteranalyse, dem Finden von dichten Teilgraphen, sowie dünnbesetzter Hauptkomponentenanalyse demonstrieren

    Standard Bundle Methods: Untrusted Models and Duality

    Get PDF
    We review the basic ideas underlying the vast family of algorithms for nonsmooth convex optimization known as "bundle methods|. In a nutshell, these approaches are based on constructing models of the function, but lack of continuity of first-order information implies that these models cannot be trusted, not even close to an optimum. Therefore, many different forms of stabilization have been proposed to try to avoid being led to areas where the model is so inaccurate as to result in almost useless steps. In the development of these methods, duality arguments are useful, if not outright necessary, to better analyze the behaviour of the algorithms. Also, in many relevant applications the function at hand is itself a dual one, so that duality allows to map back algorithmic concepts and results into a "primal space" where they can be exploited; in turn, structure in that space can be exploited to improve the algorithms' behaviour, e.g. by developing better models. We present an updated picture of the many developments around the basic idea along at least three different axes: form of the stabilization, form of the model, and approximate evaluation of the function

    Aspiration Based Decision Support Systems

    Get PDF
    This book focuses the methodology of decision analysis and support related to the principle of reference point optimization (developed by the editors of this volume and called also variously: aspiration-led decision support, quasi-satisfying framework of rationality, DIDAS methodology etc.). The selection principle applied for this volume was to concentrate on advances of theory and methodology, related to the focusing theme, to supplement them by experiences and methodological advances gained through wide applications and tests in one particular application area - the programming of development of industrial structures in chemical industry, and finally to give a very short description of various software products developed in the contracted study agreement

    Hyperspectral Image Analysis of Food Quality

    Get PDF
    corecore