358 research outputs found

    Service Level Agreement Driven Adaptive Resource Management For Web Applications on Heterogeneous Compute Clouds

    Get PDF
    Cloud computing is an emerging topic in the field of parallel and distributed computing. Many IT giants such as IBM, Sun, Amazon, Google, and Microsoft are promoting and offering various storage and compute clouds. Clouds provide services such as high performance computing, storage, and application hosting. Cloud providers are expected to ensure Quality of Service (QoS) through a Service Level Agreement (SLA) between the provider and the consumer. In this research, I develop a heterogeneous testbed compute cloud and investigate adaptive management of resources for Web applications to satisfy a SLA that enforces specific response time requirements. I develop a system on top of EUCALYTPUS framework that actively monitors the response time of the compute resources assign to a Web application and dynamically allocates the resources required by the application to satisfy the specific response time requirements

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Deploying elastic routing capability in an SDN/NFV-enabled environment

    Get PDF
    SDN and NFV are two paradigms that introduce unseen flexibility in telecom networks. Where previously telecom services were provided by dedicated hardware and associated (vendor-specific) protocols, SDN enables to control telecom networks through specialized software running on controllers. NFV enables highly optimized packet-processing network functions to run on generic/multi-purpose hardware such as x86 servers. Although the possibilities of SDN and NFV are well-known, concrete control and orchestration architectures are still under design and few prototype validations are available. In this demo we demonstrate the dynamic up-and downscaling of an elastic router supporting NFV-based network management, for example needed in a VPN service. The framework which enables this elasticity is the UNIFY ESCAPE environment, which is a PoC following an ETSI NFV MANO-conform architecture. This demo is one of the first to demonstrate a fully closed control loop for scaling NFs in an SDN/NFV control and orchestration architecture

    A Game-Theoretic Based QoS-Aware Capacity Management for Real-Time EdgeIoT Applications

    Get PDF
    More and more real-time IoT applications such as smart cities or autonomous vehicles require big data analytics with reduced latencies. However, data streams produced from distributed sensing devices may not suffice to be processed traditionally in the remote cloud due to: (i) longer Wide Area Network (WAN) latencies and (ii) limited resources held by a single Cloud. To solve this problem, a novel Software-Defined Network (SDN) based InterCloud architecture is presented for mobile edge computing environments, known as EdgeIoT. An adaptive resource capacity management approach is proposed to employ a policy-based QoS control framework using principles in coalition games with externalities. To optimise resource capacity policy, the proposed QoS management technique solves, adaptively, a lexicographic ordering bi-criteria Coalition Structure Generation (CSG) problem. It is an onerous task to guarantee in a deterministic way that a real-time EdgeIoT application satisfies low latency requirement specified in Service Level Agreements (SLA). CloudSim 4.0 toolkit is used to simulate an SDN-based InterCloud scenario, and the empirical results suggest that the proposed approach can adapt, from an operational perspective, to ensure low latency QoS for real-time EdgeIoT application instances

    Scheduling Stochastic Multi-Stage Jobs to Elastic Hybrid Cloud Resources

    Full text link
    [EN] We consider a special workflow scheduling problem in a hybrid-cloud-based workflow management system in which tasks are linearly dependent, compute-intensive, stochastic, deadline-constrained and executed on elastic and distributed cloud resources. This kind of problems closely resemble many real-time and workflow-based applications. Three optimization objectives are explored: number, usage time and utilization of rented VMs. An iterated heuristic framework is presented to schedule jobs event by event which mainly consists of job collecting and event scheduling. Two job collecting strategies are proposed and two timetabling methods are developed. The proposed methods are calibrated through detailed designs of experiments and sound statistical techniques. With the calibrated components and parameters, the proposed algorithm is compared to existing methods for related problems. Experimental results show that the proposal is robust and effective for the problems under study.This work is sponsored by the National Natural Science Foundations of China (Nos. 71401079, 61572127, 61472192), the National Key Research and Development Program of China (No. 2017YFB1400801) and the Collaborative Innovation Center of Wireless Communications Technology. Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD-Optimization of Scheduling Problems in Container Yards" (No. DPI2015-65895-R) financed by FEDER funds.Zhu, J.; Li, X.; Ruiz GarcĂ­a, R.; Xu, X. (2018). Scheduling Stochastic Multi-Stage Jobs to Elastic Hybrid Cloud Resources. IEEE Transactions on Parallel and Distributed Systems. 29(6):1401-1415. https://doi.org/10.1109/TPDS.2018.2793254S1401141529
    • …
    corecore