877 research outputs found

    Resource provisioning in Science Clouds: Requirements and challenges

    Full text link
    Cloud computing has permeated into the information technology industry in the last few years, and it is emerging nowadays in scientific environments. Science user communities are demanding a broad range of computing power to satisfy the needs of high-performance applications, such as local clusters, high-performance computing systems, and computing grids. Different workloads are needed from different computational models, and the cloud is already considered as a promising paradigm. The scheduling and allocation of resources is always a challenging matter in any form of computation and clouds are not an exception. Science applications have unique features that differentiate their workloads, hence, their requirements have to be taken into consideration to be fulfilled when building a Science Cloud. This paper will discuss what are the main scheduling and resource allocation challenges for any Infrastructure as a Service provider supporting scientific applications

    SLA-Oriented Resource Provisioning for Cloud Computing: Challenges, Architecture, and Solutions

    Full text link
    Cloud computing systems promise to offer subscription-oriented, enterprise-quality computing services to users worldwide. With the increased demand for delivering services to a large number of users, they need to offer differentiated services to users and meet their quality expectations. Existing resource management systems in data centers are yet to support Service Level Agreement (SLA)-oriented resource allocation, and thus need to be enhanced to realize cloud computing and utility computing. In addition, no work has been done to collectively incorporate customer-driven service management, computational risk management, and autonomic resource management into a market-based resource management system to target the rapidly changing enterprise requirements of Cloud computing. This paper presents vision, challenges, and architectural elements of SLA-oriented resource management. The proposed architecture supports integration of marketbased provisioning policies and virtualisation technologies for flexible allocation of resources to applications. The performance results obtained from our working prototype system shows the feasibility and effectiveness of SLA-based resource provisioning in Clouds.Comment: 10 pages, 7 figures, Conference Keynote Paper: 2011 IEEE International Conference on Cloud and Service Computing (CSC 2011, IEEE Press, USA), Hong Kong, China, December 12-14, 201

    Self-managed Cost-efficient Virtual Elastic Clusters on Hybrid Cloud Infrastructures

    Full text link
    In this study, we describe the further development of Elastic Cloud Computing Cluster (EC3), a tool for creating self-managed cost-efficient virtual hybrid elastic clusters on top of Infrastructure as a Service (IaaS) clouds. By using spot instances and checkpointing techniques, EC3 can significantly reduce the total execution cost as well as facilitating automatic fault tolerance. Moreover, EC3 can deploy and manage hybrid clusters across on-premises and public cloud resources, thereby introducing cloud bursting capabilities. We present the results of a case study that we conducted to assess the effectiveness of the tool based on the structural dynamic analysis of buildings. In addition, we evaluated the checkpointing algorithms in a real cloud environment with existing workloads to study their effectiveness. The results demonstrate the feasibility and benefits of this type of cluster for computationally intensive applications. © 2016 Elsevier B.V. All rights reserved.This study was supported by the program "Ayudas para la contratacion de personal investigador en formacion de caracter pre doctoral, programa VALi+d" under grant number ACIF/2013/003 from the Conselleria d'Educacio of the Generalitat Valenciana. We are also grateful for financial support received from The Spanish Ministry of Economy and Competitiveness to develop the project "CLUVIEM" under grant reference TIN2013-44390-R. Finally, we express our gratitude to D. David Ruzafa for support with the arduous task of analyzing the executions data.Calatrava Arroyo, A.; Romero Alcalde, E.; Moltó Martínez, G.; Caballer Fernández, M.; Alonso Ábalos, JM. (2016). Self-managed Cost-efficient Virtual Elastic Clusters on Hybrid Cloud Infrastructures. Future Generation Computer Systems. 61:13-25. https://doi.org/10.1016/j.future.2016.01.018S13256

    Hybrid spot instance based resource provisioning strategy in dynamic cloud environment

    Get PDF
    Utilization of resources to the maximum extent in large scale distributed cloud environment is a major challenge due to the nature of cloud. Spot Instances in the Amazon Elastic Compute Cloud (EC2) are provisioned based on highest bid with no guarantee of task completion but incurs the overhead of longer task execution time and price. The paper demonstrates the last partial hour and cost overhead that can be avoided by the proposed strategy of Hybrid Spot Instance. It aims to provide reliable service to the ongoing task so as to complete the execution without abruptly interrupting the long running tasks by redefining the bid price. The strategy also considers that on-demand resource services can be acquired when spot price crosses on-demand price and thereby availing high reliability. This will overcome the overhead involved during checkpointing, restarting and workload migration as in the existing system, leading to efficient resources usage for both the providers and users. Service providers revenue is carefully optimized by eliminating the free issue of last partial hour which is a taxing factor for the provider. Simulation carried out based on real time price of various instances considering heterogenous applications shows that the number of out-of-bid scenarios can be reduced largely which leads to the increased number of task completion. Checkpointing is also minimized maximally due to which the overhead associated with it is reduced. This resource provisioning strategy aims to provide preference to existing customers and the task which are nearing the execution completion

    Resource Management In Cloud And Big Data Systems

    Get PDF
    Cloud computing is a paradigm shift in computing, where services are offered and acquired on demand in a cost-effective way. These services are often virtualized, and they can handle the computing needs of big data analytics. The ever-growing demand for cloud services arises in many areas including healthcare, transportation, energy systems, and manufacturing. However, cloud resources such as computing power, storage, energy, dollars for infrastructure, and dollars for operations, are limited. Effective use of the existing resources raises several fundamental challenges that place the cloud resource management at the heart of the cloud providers\u27 decision-making process. One of these challenges faced by the cloud providers is to provision, allocate, and price the resources such that their profit is maximized and the resources are utilized efficiently. In addition, executing large-scale applications in clouds may require resources from several cloud providers. Another challenge when processing data intensive applications is minimizing their energy costs. Electricity used in US data centers in 2010 accounted for about 2% of total electricity used nationwide. In addition, the energy consumed by the data centers is growing at over 15% annually, and the energy costs make up about 42% of the data centers\u27 operating costs. Therefore, it is critical for the data centers to minimize their energy consumption when offering services to customers. In this Ph.D. dissertation, we address these challenges by designing, developing, and analyzing mechanisms for resource management in cloud computing systems and data centers. The goal is to allocate resources efficiently while optimizing a global performance objective of the system (e.g., maximizing revenue, maximizing social welfare, or minimizing energy). We improve the state-of-the-art in both methodologies and applications. As for methodologies, we introduce novel resource management mechanisms based on mechanism design, approximation algorithms, cooperative game theory, and hedonic games. These mechanisms can be applied in cloud virtual machine (VM) allocation and pricing, cloud federation formation, and energy-efficient computing. In this dissertation, we outline our contributions and possible directions for future research in this field
    corecore