68 research outputs found

    Distributed control architecture for multiservice networks

    Get PDF
    The research focuses in devising decentralised and distributed control system architecture for the management of internetworking systems to provide improved service delivery and network control. The theoretical basis, results of simulation and implementation in a real-network are presented. It is demonstrated that better performance, utilisation and fairness can be achieved for network customers as well as network/service operators with a value based control system. A decentralised control system framework for analysing networked and shared resources is developed and demonstrated. This fits in with the fundamental principles of the Internet. It is demonstrated that distributed, multiple control loops can be run on shared resources and achieve proportional fairness in their allocation, without a central control. Some of the specific characteristic behaviours of the service and network layers are identified. The network and service layers are isolated such that each layer can evolve independently to fulfil their functions better. A common architecture pattern is devised to serve the different layers independently. The decision processes require no co-ordination between peers and hence improves scalability of the solution. The proposed architecture can readily fit into a clearinghouse mechanism for integration with business logic. This architecture can provide improved QoS and better revenue from both reservation-less and reservation-based networks. The limits on resource usage for different types of flows are analysed. A method that can sense and modify user utilities and support dynamic price offers is devised. An optimal control system (within the given conditions), automated provisioning, a packet scheduler to enforce the control and a measurement system etc are developed. The model can be extended to enhance the autonomicity of the computer communication networks in both client-server and P2P networks and can be introduced on the Internet in an incremental fashion. The ideas presented in the model built with the model-view-controller and electronic enterprise architecture frameworks are now independently developed elsewhere into common service delivery platforms for converged networks. Four US/EU patents were granted based on the work carried out for this thesis, for the cross-layer architecture, multi-layer scheme, measurement system and scheduler. Four conference papers were published and presented

    Provision of QoS for legacy IP applications in an ATM-over-HFC access network

    Get PDF

    Implementation and Performance Evaluation of an NGN prototype using WiMax as an Access Technology

    Get PDF
    Telecommunications networks have evolved to IP-based networks, commonly known as Next Generation Networks (NGN). The biggest challenge in providing high quality realtime multimedia applications is achieving a Quality of Service (QoS) consistent with user expectations. One of the key additional factors affecting QoS is the existence of different QoS mechanisms on the heterogeneous technologies used on NGN platforms. This research investigates the techniques used to achieve consistent QoS on network technologies that use different QoS techniques. Numerous proposals for solving the end-to-end QoS problem in IP networks have adopted policy-based management, use of signalling protocols for communicating applications QoS requirements across different Network Elements and QoS provisioning in Network Elements. Such solutions are dependent on the use of traffic classification and knowledge of the QoS requirements of applications and services on the networks. This research identifies the practical difficulties involved in meeting the QoS requirements of network traffic between WiMax and an IP core network. In the work, a solution based on the concept of class-of-service mapping is proposed. In the proposed solution, QoS is implemented on the two networks and the concept of class-of-service mapping is used to integrate the two QoS systems. This essentially provides consistent QoS to applications as they traverse the two network domains and hence meet end-user QoS expectations. The work is evaluated through a NGN prototype to determine the capabilities of the networks to deliver real-time media that meets user expectations

    Intelligent adaptive bandwidth provisioning for quality of service in umts core networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Resource dimensioning in a mixed traffic environment

    Get PDF
    An important goal of modern data networks is to support multiple applications over a single network infrastructure. The combination of data, voice, video and conference traffic, each requiring a unique Quality of Service (QoS), makes resource dimensioning a very challenging task. To guarantee QoS by mere over-provisioning of bandwidth is not viable in the long run, as network resources are expensive. The aim of proper resource dimensioning is to provide the required QoS while making optimal use of the allocated bandwidth. Dimensioning parameters used by service providers today are based on best practice recommendations, and are not necessarily optimal. This dissertation focuses on resource dimensioning for the DiffServ network architecture. Four predefined traffic classes, i.e. Real Time (RT), Interactive Business (IB), Bulk Business (BB) and General Data (GD), needed to be dimensioned in terms of bandwidth allocation and traffic regulation. To perform this task, a study was made of the DiffServ mechanism and the QoS requirements of each class. Traffic generators were required for each class to perform simulations. Our investigations show that the dominating Transport Layer protocol for the RT class is UDP, while TCP is mostly used by the other classes. This led to a separate analysis and requirement for traffic models for UDP and TCP traffic. Analysis of real-world data shows that modern network traffic is characterized by long-range dependency, self-similarity and a very bursty nature. Our evaluation of various traffic models indicates that the Multi-fractal Wavelet Model (MWM) is best for TCP due to its ability to capture long-range dependency and self-similarity. The Markov Modulated Poisson Process (MMPP) is able to model occasional long OFF-periods and burstiness present in UDP traffic. Hence, these two models were used in simulations. A test bed was implemented to evaluate performance of the four traffic classes defined in DiffServ. Traffic was sent through the test bed, while delay and loss was measured. For single class simulations, dimensioning values were obtained while conforming to the QoS specifications. Multi-class simulations investigated the effects of statistical multiplexing on the obtained values. Simulation results for various numerical provisioning factors (PF) were obtained. These factors are used to determine the link data rate as a function of the required average bandwidth and QoS. The use of class-based differentiation for QoS showed that strict delay and loss bounds can be guaranteed, even in the presence of very high (up to 90%) bandwidth utilization. Simulation results showed small deviations from best practice recommendation PF values: A value of 4 is currently used for both RT and IB classes, while 2 is used for the BB class. This dissertation indicates that 3.89 for RT, 3.81 for IB and 2.48 for BB achieve the prescribed QoS more accurately. It was concluded that either the bandwidth distribution among classes, or quality guarantees for the BB class should be adjusted since the RT and IB classes over-performed while BB under-performed. The results contribute to the process of resource dimensioning by adding value to dimensioning parameters through simulation rather than mere intuition or educated guessing.Dissertation (MEng (Electronic Engineering))--University of Pretoria, 2007.Electrical, Electronic and Computer Engineeringunrestricte

    QoS in Telemedicine

    Get PDF

    Feasibility study of VoIP in 3GPP UMTS release 5 interworking with fixed networks

    Get PDF
    Masteroppgave i informasjons- og kommunikasjonsteknologi 2003 - Høgskolen i Agder, GrimstadThe Universal Mobile Telecommunications System (UMTS) is denoted as a 3rd generation cellular system and has been designed with the objective to be a system with global coverage. With improvement of bandwidth capabilities, the UMTS system has the ability to support real time multimedia services. The focus in this thesis is Voice over IP (VoIP) which enables a user to make phone calls in the packet switched network in UMTS. This thesis starts with a presentation of VoIP with the quality requirements related to a voice session. A voice conversation needs a guaranteed quality to satisfy the participants. This thesis focuses on three main aspects; Quality of Service mechanisms (Best Effort, IntServ and DiffServ), VoIP in UMTS with a certain quality and last but not least implementation of Quality of Service (QoS) in a voice call interworking with external networks. Best Effort cannot be used when dealing with real time traffic such as VoIP. IntServ reserves resources from the application itself, and gives opportunity for each application in the terminal to request a certain quality. DiffServ works on a higher level and classifies traffic based on type of traffic, not for a particular request. For UMTS interworking with IP networks, the theoretical results suggest that IntServ over DiffServ should be used in the UMTS gateway node. An evaluation of the UMTS network is done by checking the voice quality attained by the network during a VoIP session in comparison of a traditional circuit switched call setup. Moreover, tests from the Norwegian UMTS network operator NetCom became useful when evaluating how well the VoIP could work when implementing UMTS release 5. The tests were set up with the focus on delay and voice quality in the network, and were meant for disclosing the differences with and without quality parameters during a transmission. Due to network restrictions the test results are limited

    Enhancing end-to-end quality of service provisioning in wireless ad hoc networks using service vectors

    Get PDF
    A cross-layer architecture that achieves significant power savings, while enhancing the end-to-end QoS provisioning and granularity in wireless ad hoc networks is proposed in this thesis. Recently, a new concept called service vector has been introduced, which enables an end host to choose different service classes along its data path. This scheme enhances the user benefits from the network services and network resource utilization, while maintaining the simplicity and scalability of the current Differentiated Services (DiffServ) network architecture. This thesis explores the application of this concept on wireless ad hoc networks and provides a cross-layer architecture based on the combination of delay-bounded wireless link level scheduling and the network layer service vector concept, which enables a wireless ad hoc network to achieve significant power savings and finer end-to-end QoS granularity. The impact of various traffic arrival distributions and flows with different QoS requirements on the performance of this cross-layer architecture is also investigated and evaluated
    corecore