557 research outputs found

    Inter-Domain Integration of Services and Service Management

    No full text
    The evolution of the global telecommunications industry into an open services market presents developers of telecommunication service and management systems with many new challenges. Increased competition, complex service provision chains and integrated service offerings require effective techniques for the rapid integration of service and management systems over multiple organisational domains. These integration issues have been examined in the ACTS project Prospect by developing a working set of integrated, managed telecommunications services for a user trial. This paper presents the initial results of this work detailing the technologies and standards used, the architectural approach taken and the application of this approach to specific services

    A look at cloud architecture interoperability through standards

    Get PDF
    Enabling cloud infrastructures to evolve into a transparent platform while preserving integrity raises interoperability issues. How components are connected needs to be addressed. Interoperability requires standard data models and communication encoding technologies compatible with the existing Internet infrastructure. To reduce vendor lock-in situations, cloud computing must implement universal strategies regarding standards, interoperability and portability. Open standards are of critical importance and need to be embedded into interoperability solutions. Interoperability is determined at the data level as well as the service level. Corresponding modelling standards and integration solutions shall be analysed

    Towards implementing integrated building product libraries

    Get PDF
    Electronic product catalogues and brochures are gaining popularity but there is little agreement on content, format and searching methods. This limits their usability and integration with existing construction software tools. This paper examines a productmodelling approach to delivering building product information and describes a proposed multi-tier client-server environment. ISO/STEP and IAI/IFC building product models are considered to facilitate representation, exchange and sharing of product information. The proposed architecture incorporates scalability with middleware components that would provide single or few points of entry to integrated product information. This paper is part of a research project, which builds on the results of related projects including ConstructIT Strategy, PROCAT-GEN, Active Catalog, COMBINE and ARROW, towards implementing the required software components

    Integration of Internet and Telecommunications- An Architecture for Hybrid Services

    Get PDF
    In this article, we propose an architecture for hybrid services, i.e., services that span many network technologies, such as the Public Switched Telephone Network (PSTN), cellular networks and networks based on the Internet Protocol (IP). These services will play an important role in the future because they leverage on the existing infrastructures, rather than requiring new and sophisticated mechanisms to be deployed. We explore a few issues related to hybrid services and propose a platform, as well as a set of components, to facilitate their creation and deployment. The existing infrastructure is only required to generate specific events when requests for hybrid services are detected. We present the design of a service layer, based on Java, that handles the treatment of these special requests. Our service layer is provided with a set of generic components realized according to the JavaBeans model. We illustrate the strength of our architecture by discussing two hybrid-service examples: a calendar service and a call forwarding service

    Tool to Evaluate Performance in Distributed Heterogeneous Processing

    No full text

    Using real options to select stable Middleware-induced software architectures

    Get PDF
    The requirements that force decisions towards building distributed system architectures are usually of a non-functional nature. Scalability, openness, heterogeneity, and fault-tolerance are examples of such non-functional requirements. The current trend is to build distributed systems with middleware, which provide the application developer with primitives for managing the complexity of distribution, system resources, and for realising many of the non-functional requirements. As non-functional requirements evolve, the `coupling' between the middleware and architecture becomes the focal point for understanding the stability of the distributed software system architecture in the face of change. It is hypothesised that the choice of a stable distributed software architecture depends on the choice of the underlying middleware and its flexibility in responding to future changes in non-functional requirements. Drawing on a case study that adequately represents a medium-size component-based distributed architecture, it is reported how a likely future change in scalability could impact the architectural structure of two versions, each induced with a distinct middleware: one with CORBA and the other with J2EE. An option-based model is derived to value the flexibility of the induced-architectures and to guide the selection. The hypothesis is verified to be true for the given change. The paper concludes with some observations that could stimulate future research in the area of relating requirements to software architectures

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017
    corecore