13,858 research outputs found

    Taxonomy of Trust-Relevant Failures and Mitigation Strategies

    Get PDF
    We develop a taxonomy that categorizes HRI failure types and their impact on trust to structure the broad range of knowledge contributions. We further identify research gaps in order to support fellow researchers in the development of trustworthy robots. Studying trust repair in HRI has only recently been given more interest and we propose a taxonomy of potential trust violations and suitable repair strategies to support researchers during the development of interaction scenarios. The taxonomy distinguishes four failure types: Design, System, Expectation, and User failures and outlines potential mitigation strategies. Based on these failures, strategies for autonomous failure detection and repair are presented, employing explanation, verification and validation techniques. Finally, a research agenda for HRI is outlined, discussing identified gaps related to the relation of failures and HR-trust

    Multilevel Runtime Verification for Safety and Security Critical Cyber Physical Systems from a Model Based Engineering Perspective

    Get PDF
    Advanced embedded system technology is one of the key driving forces behind the rapid growth of Cyber-Physical System (CPS) applications. CPS consists of multiple coordinating and cooperating components, which are often software-intensive and interact with each other to achieve unprecedented tasks. Such highly integrated CPSs have complex interaction failures, attack surfaces, and attack vectors that we have to protect and secure against. This dissertation advances the state-of-the-art by developing a multilevel runtime monitoring approach for safety and security critical CPSs where there are monitors at each level of processing and integration. Given that computation and data processing vulnerabilities may exist at multiple levels in an embedded CPS, it follows that solutions present at the levels where the faults or vulnerabilities originate are beneficial in timely detection of anomalies. Further, increasing functional and architectural complexity of critical CPSs have significant safety and security operational implications. These challenges are leading to a need for new methods where there is a continuum between design time assurance and runtime or operational assurance. Towards this end, this dissertation explores Model Based Engineering methods by which design assurance can be carried forward to the runtime domain, creating a shared responsibility for reducing the overall risk associated with the system at operation. Therefore, a synergistic combination of Verification & Validation at design time and runtime monitoring at multiple levels is beneficial in assuring safety and security of critical CPS. Furthermore, we realize our multilevel runtime monitor framework on hardware using a stream-based runtime verification language

    On Controllability of Artificial Intelligence

    Get PDF
    Invention of artificial general intelligence is predicted to cause a shift in the trajectory of human civilization. In order to reap the benefits and avoid pitfalls of such powerful technology it is important to be able to control it. However, possibility of controlling artificial general intelligence and its more advanced version, superintelligence, has not been formally established. In this paper, we present arguments as well as supporting evidence from multiple domains indicating that advanced AI can’t be fully controlled. Consequences of uncontrollability of AI are discussed with respect to future of humanity and research on AI, and AI safety and security. This paper can serve as a comprehensive reference for the topic of uncontrollability

    Agent-Based Simulations of Blockchain protocols illustrated via Kadena's Chainweb

    Full text link
    While many distributed consensus protocols provide robust liveness and consistency guarantees under the presence of malicious actors, quantitative estimates of how economic incentives affect security are few and far between. In this paper, we describe a system for simulating how adversarial agents, both economically rational and Byzantine, interact with a blockchain protocol. This system provides statistical estimates for the economic difficulty of an attack and how the presence of certain actors influences protocol-level statistics, such as the expected time to regain liveness. This simulation system is influenced by the design of algorithmic trading and reinforcement learning systems that use explicit modeling of an agent's reward mechanism to evaluate and optimize a fully autonomous agent. We implement and apply this simulation framework to Kadena's Chainweb, a parallelized Proof-of-Work system, that contains complexity in how miner incentive compliance affects security and censorship resistance. We provide the first formal description of Chainweb that is in the literature and use this formal description to motivate our simulation design. Our simulation results include a phase transition in block height growth rate as a function of shard connectivity and empirical evidence that censorship in Chainweb is too costly for rational miners to engage in. We conclude with an outlook on how simulation can guide and optimize protocol development in a variety of contexts, including Proof-of-Stake parameter optimization and peer-to-peer networking design.Comment: 10 pages, 7 figures, accepted to the IEEE S&B 2019 conferenc

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems

    F1/10: An Open-Source Autonomous Cyber-Physical Platform

    Get PDF
    In 2005 DARPA labeled the realization of viable autonomous vehicles (AVs) a grand challenge; a short time later the idea became a moonshot that could change the automotive industry. Today, the question of safety stands between reality and solved. Given the right platform the CPS community is poised to offer unique insights. However, testing the limits of safety and performance on real vehicles is costly and hazardous. The use of such vehicles is also outside the reach of most researchers and students. In this paper, we present F1/10: an open-source, affordable, and high-performance 1/10 scale autonomous vehicle testbed. The F1/10 testbed carries a full suite of sensors, perception, planning, control, and networking software stacks that are similar to full scale solutions. We demonstrate key examples of the research enabled by the F1/10 testbed, and how the platform can be used to augment research and education in autonomous systems, making autonomy more accessible

    Prescriptions for Excellence in Health Care Summer 2009 Download Full PDF Issue 5

    Get PDF

    IEEE/NASA Workshop on Leveraging Applications of Formal Methods, Verification, and Validation

    Get PDF
    This volume contains the Preliminary Proceedings of the 2005 IEEE ISoLA Workshop on Leveraging Applications of Formal Methods, Verification, and Validation, with a special track on the theme of Formal Methods in Human and Robotic Space Exploration. The workshop was held on 23-24 September 2005 at the Loyola College Graduate Center, Columbia, MD, USA. The idea behind the Workshop arose from the experience and feedback of ISoLA 2004, the 1st International Symposium on Leveraging Applications of Formal Methods held in Paphos (Cyprus) last October-November. ISoLA 2004 served the need of providing a forum for developers, users, and researchers to discuss issues related to the adoption and use of rigorous tools and methods for the specification, analysis, verification, certification, construction, test, and maintenance of systems from the point of view of their different application domains

    Operationalizing COLREGs in SMART ship navigation

    Get PDF
    The maritime industry is undergoing a transformation driven by digitalization and connectivity. The technological realization of Maritime Autonomous Surface Ships (MASS) presents significant challenges for the maritime human factors research community. These challenges relate to system design, human-automation interaction, stakeholder training, use and acceptance of new technology systems, and on a larger scale, how the regulatory framework, including the Collision Regulations (COLREGs) will be impacted within a MASS system. Decision support is the next step in the transformation towards more connected ships, however, such systems for navigation are largely unexplored from the users’ perspective.The decision support system studied in this project was developed by W\ue4rtsil\ue4 and is called Advanced Intelligent Manoeuvring (AIM), aligning with “low-level automation” or Level 1 (out of a 4-level progression) of MASS. AIM can generate suggestions for course or speed alterations based on data from surrounding traffic. A full-mission bridge simulator study was conducted at Chalmers University of Technology in Gothenburg, Sweden with nineteen Swedish navigators. Three traffic scenarios each with three ships were completed in both baseline (no AIM) and AIM conditions. A mixed methods data collection and analysis approach was employed using questionnaires, collective interviews, and an evaluation of the ship tracks. The results show that the navigators perceive AIM as an advisory tool, to visualize how traffic situations could unfold, an outcome currently difficult for most navigators to conceive. This report discusses the present and near future of the maritime sociotechnical system, highlighting the benefits of automation, while remaining vigilant about the potential dangers
    • …
    corecore