673 research outputs found

    An implementation of Deflate in Coq

    Full text link
    The widely-used compression format "Deflate" is defined in RFC 1951 and is based on prefix-free codings and backreferences. There are unclear points about the way these codings are specified, and several sources for confusion in the standard. We tried to fix this problem by giving a rigorous mathematical specification, which we formalized in Coq. We produced a verified implementation in Coq which achieves competitive performance on inputs of several megabytes. In this paper we present the several parts of our implementation: a fully verified implementation of canonical prefix-free codings, which can be used in other compression formats as well, and an elegant formalism for specifying sophisticated formats, which we used to implement both a compression and decompression algorithm in Coq which we formally prove inverse to each other -- the first time this has been achieved to our knowledge. The compatibility to other Deflate implementations can be shown empirically. We furthermore discuss some of the difficulties, specifically regarding memory and runtime requirements, and our approaches to overcome them

    Proof-Pattern Recognition and Lemma Discovery in ACL2

    Full text link
    We present a novel technique for combining statistical machine learning for proof-pattern recognition with symbolic methods for lemma discovery. The resulting tool, ACL2(ml), gathers proof statistics and uses statistical pattern-recognition to pre-processes data from libraries, and then suggests auxiliary lemmas in new proofs by analogy with already seen examples. This paper presents the implementation of ACL2(ml) alongside theoretical descriptions of the proof-pattern recognition and lemma discovery methods involved in it

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well

    Isabelle/PIDE as Platform for Educational Tools

    Full text link
    The Isabelle/PIDE platform addresses the question whether proof assistants of the LCF family are suitable as technological basis for educational tools. The traditionally strong logical foundations of systems like HOL, Coq, or Isabelle have so far been counter-balanced by somewhat inaccessible interaction via the TTY (or minor variations like the well-known Proof General / Emacs interface). Thus the fundamental question of math education tools with fully-formal background theories has often been answered negatively due to accidental weaknesses of existing proof engines. The idea of "PIDE" (which means "Prover IDE") is to integrate existing provers like Isabelle into a larger environment, that facilitates access by end-users and other tools. We use Scala to expose the proof engine in ML to the JVM world, where many user-interfaces, editor frameworks, and educational tools already exist. This shall ultimately lead to combined mathematical assistants, where the logical engine is in the background, without obstructing the view on applications of formal methods, formalized mathematics, and math education in particular.Comment: In Proceedings THedu'11, arXiv:1202.453

    Fix Your Types

    Full text link
    When using existing ACL2 datatype frameworks, many theorems require type hypotheses. These hypotheses slow down the theorem prover, are tedious to write, and are easy to forget. We describe a principled approach to types that provides strong type safety and execution efficiency while avoiding type hypotheses, and we present a library that automates this approach. Using this approach, types help you catch programming errors and then get out of the way of theorem proving.Comment: In Proceedings ACL2 2015, arXiv:1509.0552
    corecore