146 research outputs found

    A connection method for a defeasible extension of ALCH\mathcal{ALCH}

    Full text link
    This paper proposes a connection method \`a la Bibel for an exception-tolerant family of description logics (DLs). As for the language, we assume the DL ALCH\mathcal{ALCH} extended with two typicality operators: one on (complex) concepts and one on role names. The language is a variant of defeasible DLs, as broadly studied in the literature over the past decade, in which most of these can be embedded. We revisit the definition of the matrix representation of a knowledge base and establish the conditions for a given axiom to be provable. We show that the calculus terminates and is sound and complete w.r.t. a DL version of the preferential semantics widely adopted in non-monotonic reasoning

    A Labelling Framework for Probabilistic Argumentation

    Full text link
    The combination of argumentation and probability paves the way to new accounts of qualitative and quantitative uncertainty, thereby offering new theoretical and applicative opportunities. Due to a variety of interests, probabilistic argumentation is approached in the literature with different frameworks, pertaining to structured and abstract argumentation, and with respect to diverse types of uncertainty, in particular the uncertainty on the credibility of the premises, the uncertainty about which arguments to consider, and the uncertainty on the acceptance status of arguments or statements. Towards a general framework for probabilistic argumentation, we investigate a labelling-oriented framework encompassing a basic setting for rule-based argumentation and its (semi-) abstract account, along with diverse types of uncertainty. Our framework provides a systematic treatment of various kinds of uncertainty and of their relationships and allows us to back or question assertions from the literature

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Abstract Argumentation

    Full text link

    Algorithms for computational argumentation in artificial intelligence

    Get PDF
    Argumentation is a vital aspect of intelligent behaviour by humans. It provides the means for comparing information by analysing pros and cons when trying to make a decision. Formalising argumentation in computational environment has become a topic of increasing interest in artificial intelligence research over the last decade. Computational argumentation involves reasoning with uncertainty by making use of logic in order to formalize the presentation of arguments and counterarguments and deal with conflicting information. A common assumption for logic-based argumentation is that an argument is a pair where Φ is a consistent set which is minimal for entailing a claim α. Different logics provide different definitions for consistency and entailment and hence give different options for formalising arguments and counterarguments. The expressivity of classical propositional logic allows for complicated knowledge to be represented but its computational cost is an issue. This thesis is based on monological argumentation using classical propositional logic [12] and aims in developing algorithms that are viable despite the computational cost. The proposed solution adapts well established techniques for automated theorem proving, based on resolution and connection graphs. A connection graph is a graph where each node is a clause and each arc denotes there exist complementary disjuncts between nodes. A connection graph allows for a substantially reduced search space to be used when seeking all the arguments for a claim from a given knowledgebase. In addition, its structure provides information on how its nodes can be linked with each other by resolution, providing this way the basis for applying algorithms which search for arguments by traversing the graph. The correctness of this approach is supported by theoretical results, while experimental evaluation demonstrates the viability of the algorithms developed. In addition, an extension of the theoretical work for propositional logic to first-order logic is introduced
    • …
    corecore